
f
The COMPUTER

JOURMAL*

Issue Number 4 4 May / June 1990 $3.95

Animation with Turbo C

Multitasking in Forth

Mysteries of PC Floppy Disks Revealed

DosDisk

Advanced CP/M

Real Computing

Forth Column

The Z-System Corner

The Computer Corner

ISSN # 0748-9331

The Computer Journal

Editor/Publisher

Art Carlson

Circulation

Donna Carlson

Contributing Editors

Bill Kibler

Bridger Mitchell

Clem Pepper

Richard Rodman
Jay Sage

Dave Wenstein

The Computer Journal is pub-

lished six times a year by Technology

Resources, 190 Sullivan Crossroad,

Columbia Falls, MT 59912

(406)257-9119

Entire contents copyright © 1990

by Technology Resources.

Subscription rates-$18 one year

(6 issues), or $32 two years (12 is-

sues) in the U.S., $24 one year sur-

face in other countries. Inquire for air

rates. All funds must be in U.S. dol-

lars on a U.S. bank.

Send subscription, renewals, ad-

dress changes, or advertising in-

quires to: The Computer Journal, 190

Sullivan Crossroad, Columbia Falls,

MT 59912, phone (406) 257-91 19.

Registered Trademarks
K Is easy to get in the habit of using company

trademarks as generic terms, but these trademarks are

the property of the respective companies. It Is important

to acknowledge these trademarks as their property to

avoid their losing the rights and the term becoming
public property. The following frequently used trade-

marks are acknowledged, and we apologize for any we
have overlooked.

Apple II, II +, lie, lie, Usa, Macintosch, DOS 3.3,

ProDos; Apple Computer Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStamper, BackGroun-

der ii, Dos Disk; Plu'Perfect Systems. Clipper, Nan-

tucket; Nantucket, Inc. dBase, dBASE II, dBASE III,

dBASE III Plus, dBASE IV; Ashton-Tate, Inc. MBASIC,
MS-DOS, Windows, Word; Microsoft WordStar; Micro-

Pro International. IBM-PC, XT, and AT, PC-DOS; IBM

Corporation. ZOO, Z280; Zilog Corporation. Turbo Pas-

cal, Turbo C, Paradox; Borland International. HD64180;
Hitachi America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The Com-
puter Journal, they are acknowledged to be the prop-

erty of the respective companies even If not specifically

acknowledged in each occurrence.

The COMPUTER

JOURNAL

Issue Number 44 May / June 1 990

Editorial

Animation with Turbo C
Part one in this issue covers the basic tools and

the Turbo C Ver. 2.0 graphics libraries.

By Clem Pepper.

2

4

Multitasking in Forth

Implementing multitasking with New Micros

F68FC1 1 and Max-Forth.

By Matthew Mercaldo.

Mysteries of PC Floppy Disks Revealed
Here's the information you need to understand

FM, MFM, and the twisted cable.

By Richard Rodman.

11

DosDisk
The MS-DOS disk format emulator for CP/M

systems.

By Daniel J. Mareck.

16

19

21Advanced CP/M
ZMATE Z-System programmer's editor and using

lookup and dispatch for passing parameters.

By Bridger Mitchell.

Real Computing 25
The NS32000.

By Richard Rodman.

Forth Column 27
Forth news, and handling strings in Forth.

By Dave Weinstein.

The Z-System Corner 29
Working with the MEX telecommunications

package.

By Jay Sage.

The Computer Corner

.

By Bill Kibler.

40

Editor's Page

Challenge of the Future Part 2

My comments in issue #43 on the fu-

ture employment prospects for computer

programmers were intended to incite re-

sponse and violent disagreement. I have

not received any reaction from our read-

ers, but instead have noted several rein-

forcing articles in other publications.

The UNIX Journal (7620 242nd Street

S.W., Edmonds, WA 98020-5463) carried

an article entitled Software Development in

the 1990s by Loren West. In this article,

West discusses several challenges which

face the software industry in the next dec-

ade. Portions of the article are:writing

software is a clerical task, much more

suited for computers,envision software

production in the '90s being completely

different from current methods. The pro-

grammer will use his CASE tool to de-

scribe the application....,the manufac-

turing plant will custom manufacture the

software for the customer. Application

programmers will become obsolete, and

they will be moved to less clerical posi-

tions.... designing software, and virtually

no time programming.

An article on EEs' new challenge: elec-

tronic immigrants by Robert Bellinger in

the March 12, 1990 issue of Electronic En-

gineering Times is subtitled As telcom ad-

vances, work may gravitate to Third World

EEs. Portions of the article read:five or

10 years down the road, a Pakistani or In-

dian EE might be doing the job you're

working on now...., getting more profitable

to automate or transmit work to areas that

offer low labor rates Texas Instru-

ments, Inc., Hewlett-Packard Co. and

Digital Equipment Corp. are farming soft-

ware applications to Indian subsidiaries.

....using phone lines, faxes and Federal

Express to relay work to UNIX program-

mers based in Calcutta of Bangalore.

West's article talks about programming

being turned over to automated systems,

and Bellinger talks about the work being

done overseas. Consider the prospects of

competing with a software engineer with

three years of Unix programming experi-

ence and a master's degree who earns

$7,000 a year and is equipped with a Sun

workstation. Bellinger calls them "elec-

tronic immigrants" because they can re-

main in their country and communicate at

speeds predicted to reach 1.5 Mbit by

1995 and 45 Mbit by 2000.

American industry is being financially

squeezed. They are downsizing and are

searching for non-traditional methods of

cutting costs and reducing long term em-

ployment and pension commitments

—automation and transmission of work to

low wage areas is very attractive to them.

Much of the routine data entry and word

processing work is already being sent over-

seas and the foreign placement of more

advanced programming is accelerating

with 1995 projected as the point at which

the effect will be apparent.

Current cuts in defense spending are

another factor affecting the technical job

market, and many of the employment

losses will be permanent because the com-

panies will switch to automation and/or

overseas sources instead of refilling posi-

tions which have been eliminated.

The crystal ball is too cloudy to accu-

rately predict the future in our fast chang-

ing environment—we will be fortunate if

we can foresee some of the major trends. I

feel that five years from now most job op-

portunities in large organizations in estab-

lished fields will be for high level people

with a lot of experience who can supervise

and coordinate foreign nationals working

in their own countries. There will also be a

need for advanced technician grade people

to service and maintain the complex de-

vices in offices and factories.

That's for the established fields. An en-

tirely different situation will exist for en-

trepreneurial concerns working on new

developments where fully automated and

foreign sources do not yet exist. These pio-

neers will require high tech people with ex-

tensive experience in abstruse specialities,

who also know how to program.

Employment positions for people de-

fined as programmers will essentially dis-

appear during the next five years. Every-

one will be expected to be able to use the

automated CASE program generation

tools, or to do the necessary programming

as part of their primary job function. Re-

cruiters will be searching for engineers and

designers who can also program, instead of

people who just program what someone

else has designed. In the past, program-

ming was a speciality performed by a very

small aristocracy. In the future, hiring

someone who just programs would be like

hiring someone to do simple multiplication

and division for engineers who could not

understand how to use a calculator.

Current employment ads already re-

flect this trend. Some excerpts are: ...expe-

rience in instrumentation, control systems,

data acquisition and microprocessors. Ex-

perience with electronic CAD software a

plus. ...design, development, test & inte-

gration of software in a high order lan-

guage to be used in automated instrument

test equipment. ...to continue the develop-

ment of fuel controlling devices, point-of-

sale consoles, and financial network com-

munications. ...experience in software de-

velopment with real time embedded con-

trollers. ...analog background in electronic

circuits and devices. Experience with ana-

log simulation. ...networking basics includ-

ing mixed networks. ...strength in com-

puter-aided software engineering.

It is time that we reduce the emphasis

on computers and programming as entities

in themselves, and pay more attention to

using software and hardware to accom-

plish tasks. Software and hardware design

are still required, but they are part of an-

other discipline rather than a separate

function. We are researching this changing

market and will be presenting more appli-

cation oriented articles to help prepare

you for the future. Material on embedded

controllers, serial and parallel communica-

tions, interfacing, digital signal processing,

data acquisition and analysis, motor con-

trol, and parallel processing is in prepara-

tion. We look forward to your suggestions

on additional topics— and your articles!

(Continued on page 38)

The Computer Journal / #44

The Best External 3.5" |
$269

Drive Kit
• Works with both 720KB and 1.4MB diskettes in any PC, XT or

AT
• Automatically senses whether you are using
720KB or 1.4MB diskettes

•All Inclusive: drive, cable, card and software
included

•Simple installation

• Coexists with existing drive controllers

• 1 year warranty »w*^#*^*»/» s*±s%
cat. #megm $269 megara««?
MegaMate 2.8MB kit also available. MegaMate II allows you to

read/write/format 720K 1.4MB & 2.8MB disks. Includes all features of

bhe standard MegaMate. Cat. #MEGM2, $399.

World's Most Reliable

Backup jk^j. $399

Why hassle with floppy disk backup

programs when you already own
half of the most reliable tape

backup system? The Videotrax

controller board allows you to backup your

hard disk drive—up to 240 megabytes—on a single,

inexpensive videotape using almost any VCR.

World's Most Reliable Backup
Videotrax is made by AlphaMicro, a company which has been

creating and perfecting videotape backup technology for nearly 10

years. Using error checking codes and multiple copies ofyour

data, Videotrax makes a standard grade videotape more reliable

than any other backup system.
• Store up to 240 MB on a single videotape
• Use any VHS, Beta, 8mm, or European VCR with video input
and outputjacks

• Time-delayed unattended backup
• File-by-file backup for all, single, or groups of files
• More reliable than streamer tape, floppies, or hard disks
• Stores 1MB per 1.3 minutes
• 30 day money back guarantee

At only $199, Videotrax is the most cost-effective backup system.

Order yours today. Cat.#VIDT.
IBM PS/2 (MicroChannel) Version only $249, Cat. #VTOM

snOOp II

The Intelligent

Disassembler

SNOOP 80 x 86 Disassembler

Help F1

Enter File Name F2
Disassemble file F3
Output .ASM File F4

Output .MAP File F5
Automatic Disassembly F6
Automatic Options F7
Tutorial F8
RPN Calculator F9
Quit F10
F1 toF10

Look What's Inside
snOOp II takes

incomprehensible
object code and
turns it into

assembly language
source code. That's

not so unique, but
snOOp II is an
intelligent

disassembler that
automatically

comments each
line of code, and labels jump targets. It will

even explain what each instruction does in the
context of the program. That's built in help
that borders on an expert system (actually

more like a tutor, ready to explain everything).

snOOp II also has one of the best tutorials

we've ever seen. It disassembles a file that is

especially commented to explain it's workings
to you. As you progress through the file you
learn how to identify data areas snOOp
couldn't catch, how to interpret what you see,

and how to move quickly and smoothly through
software— tracing the logic automatically as
you go.

snOOp correctly interprets all instructions

for the 8086, 8088, 80186, 80286, 80386, 8087
and 80287, 80387 processors and coprocessors.

It identifies interrupt calls and port addresses.

So what's this good for? Well it's certainly

the best way around to learn assembly
language programming. And it's the best way
to make changes to software when you don't

have the source code.

Cat. #SNOO, $49 Order today and save!!

We guarantee that you'll be completely satisfied with
your purchase or else:

• We will replace the products OR
• We will promptly and cheerfully refund your
money

Please call Customer Service at (805) 524-4189 for a

return authorization number before returning any products.

Guarantee is limited to the first 30 days after purchase.

Epson/Okidata Upgrade
This easy-to-use enhancement makes your Okidata ML82A, 83A Epson MX, FX, RX, or JX a powerful new printer. Don't

toss out your workhorse Epson or Okidata when you can easily install this hardware upgrade and give it new life.

Get the latest IBM Graphics Printer capabilities, including the full IBM Character Set, 10, 12, & 17 pitch text, IBM/
Epson-compatible graphics (except on RX), and super smart looking near letter quality. You get all these features via

software control or by simply touching the three buttons on your control

panel. Does everything Okigraph, Plug-n-Play and Graftrax do and more!

Comes complete with manual. Satisfaction guaranteed. Order today.

For Epson printers, order Dots-Perfect, Cat. #DOTP, $69.

For Okidata printers, order PC-Writer, Cat. #PCWR, $79.

r lettei

D

iMHi-.m
[COMPUTER PRODUCTS

J

1*800•456*4123
Serving Computer
Users Since 1982

Call for a PC or
CP/M Catalog

| Ad Code: 110-6. Add $5.50 shipping. CA & NY Res. Add Sales Tax.

330 Central Avenue • Fillmore, CA 93015 • FAX (805) 524-4026

Animation with Turbo C Ver. 2.0

Part 1 : The Basic Tools

by Clem Pepper

My last article described many features of Borland's Turbo C
graphics library. This article, picking up where the previous left off,

emphasizes application of the library to screen animation. As a

point of interest, a check of the indexes of the Borland User and

Reference Guides reveals a total lack of any reference to anima-

tion. As our experience develops, the reason for the omission be-

comes clear. With respect to animation the library leaves much to

be desired in ease of use, in speed, and in overall performance.

Still it is not all bad. I have a rather elegant war game running,

which, while somewhat less than marketable in quality was a chal-

lenge to program and is fun to play. Most of what you need to

know for creating your own screen action will be found in this

writing. Part 2 will continue with the development of a full fledged

action game.

A few reminders before plunging into the awesome details.

Three essentials of programming— planning, patience and persis-

tence-are a must. Think out your objectives. Make sketches of

your game figures using grids similar to those shown previously.

Work up the construction statements on scribble paper before

typing them into your program. And speaking of typing, a good

editor really speeds up the job. Attributes of a good editor are

speed and ease of copy and move operations.

Control logic in game programs becomes complex very rapidly,

in particular when several game objects interact with each other.

While mistakes in logic do impede progress, many errors I contend

with arise from silly mistakes— missing ('s, ;'s, {'s and the like. A
major source is shooting from the hip in an effort to resolve prob-

lems quickly instead of taking a break to sit back and think out

solutions. And I have even learned it pays to go back to the book

from time to time.

There is a caution I must give before going further. The Turbo

C graphics bypass the BIOS ROM for direct interaction with the

hardware. This, I would imagine, assumes full IBM compatibility.

The possibility of adverse effects with a computer that is less than

fully compatible may exist. My own Zenith is described as 99 per-

cent compatible. One program I experimented with ran perfectly.

But in some mysterious way it interacted with the system tracks on

my hard disk. As a result I had to re-format the drive and write

back all the files. That program, I assure you, is NOT included

with this article. All the examples perform properly on my com-

puter. I have a CGA adapter. All my program work is done on a

floppy in drive A:, I keep no data files on my hard drive.

Well, so much for philosophy. Let's animate.

Entering the Graphics Mode.

Listing 1, HEADING.C, should be employed with each of the

example listings provided. The graphic declarations and functions

are a requirement for any program making use of the graphics

library. If you have other than a CGA adapter you should make an

appropriate correction.

One observation. The declaration

int graphdriver = CGA; /* or EGA or other adapter */

can be written as

int graphdriver = DETECT;

in which case the function initgraph() will check your system for

the adapter in use and load the appropriate graphics driver. If I

were putting out a program in the public domain or as shareware I

would use DETECT. For my own use I prefer specifying the

adapter I have.

Also note that once initgraphQ has been called graphmode

cannot be changed.

/* HEADING.C
** Include this listing with each of the example programs.
** Note that this listing includes main() {

** Insert program # includes, graphmode and needed
** declarations with each of the example programs.
*/

/*»*** insert lincludeso *****/

/* == Begin program == */

main(

)

{

int graphdriver = CGA; /* graphics driver */

int graphmode = ?; /* specify 0, 1, 2, or 3 */

/* ** graphmode cannot be changed later in a program ** */

int errorcode; /* graphics error code */

/***** insert program declarations *****?

initgraphf&graphdriver, figraphmode, "e:\\btc20")

;

/* ** replace "e:\\btc20" with your directory location ** */

errorcode = (graphresult(
)) ; /* get result code */

/* ** graphics error function routine call ** */

if (errorcode != grOk) /* always check for error */

{

printf("Graphics error: %s\n ,*,grapherrormsg(errorcode))

;

exit(l)

;

}

/* ** call to set background color ** */

setbkcolor(BLUE)

;

Listing 1. Heading to be used with the example programs.

The Computer Journal / #44

/* ARMYJTNK.C
** Left/right directed stick line tank figure.
** using the TURBO C Ver. 2.0 library routines.
** Tank gun omitted to permit multi-angle shell firing.
*/

linclude <stdio.h>
linclude <conio.h>
linclude <dos.h>
linclude <ctype.h>
linclude <graphics.h>

/* ** global declarations ** */

define SFKEY 0x16

int asc, sen;

/***** insert heading. c *****/

/* ** additional declarations in main() ** */

int tdir_flg =0; / tank moves to left

int i 1, left_col = 300, rite_col - 319;

char run * ' '
;

/* ** display exit, tank move messages ** */

outtextxy (2 , 2 , "Arrow keys move, stop the tank.");
outtextxy{20, 35, "Pressing 'q* exits the loop.");
moveto(20,50)

;

outtext("Then press any key to quit.");

/* ** begin animation ** */

/* ** define viewport ** */

while (i) <

if(tdir_flg ==1) {

left_col += 5; rite_col += 5;

if(left_col >= 300) tdir_flg

}

else if(tdir_flg ==0) {

left_col -= 5; rite_col -= 5;

if(left_col <= 5) tdir_flg =

rd_nonasky() ; {

/* ** move tank to the left ** */

if (asc ==75) { tdir_flg =0; continue;
/* ** move tank to the right ** */

else if(asc == 77) { tdir_flg » 1; continue;
/* ** halt tank in current position ** */

else if (asc »« 72) { tdir_flg = 2; continue;

>

run = (toupper(toascii(scn)
))

;

if (run == 'Q'
) i = 0;

}

}

draw tank
()

;

/* for stationery view */

getch ()

;

/* before exiting. */

closegraph(

}

; / * restore text mode */

/* == draw tank as sequence of horiz lines == */

draw tank(

)

<

setlinestyle (0,0, i); /* solid line, one pixel wide */

setcolor (2)

;

/* tank top is red */

line(9, 0,15,0); /* segment a */

setlinestyle (0,0, 3); /* solid line, 3 pixels wide */

line(7,2,17,2); /* segment c */

setlinestyle (0,0, i); /* solid line, one pixel wide */

line(9,4,15,4); /* segment d */

setcolor (1)

;

/* lower tank is green */

line(5,5,19,5)

;

/* segment e */

line(4,6,19,6); /* segment f */

line(5,7,19,7); /* segment g */

line(6,8,18,8)

;

/* segment h */

line(7,9,17,9); /* segment i */

0; }

»/

i;

}

setviewportf left_col, 189,rite_col, 199, 1) ;

draw_tank()

;

delay (30) ; clearviewport ()

;

if(kbhit() == 0) continue;
else {

/* == read non-ascii key

int rd_nonasky(

)

{

union REGS regs;
regs.h.ah * 0;

regs.h.al - 0;

int86(SFKEY, tregs, dregs);
asc - regs.h.ah; /* ASCII code */

sen = regs.h.al; /* SCAN code */

}

Listing 2. A program illustrating animation using setviewport ()

.

Animation With Viewports

Because viewports were discussed last time with program ex-

amples we have already made their acquaintance. We continue

here with applications leading to screen action in which more than

one viewport is active.

Listing 2, ARMY_TNK.C, is a repeat of TANK.C with addi-

tional features. These are provisions for controlling the tank's mo-

tion across the screen. It can be directed left, right, or motion

stopped by using the left, right, and up arrow keys. The program

also includes a text message. The display of text is covered in a

later section.

In this program we employ the function draw_tank() on each

pass through the while() loop in main(). The program employs

direction flags set by arrow keys to control tank movement from

side to side and to halt the motion. Note that the while loop opens

with if logic for reading the flags. The column values are incre-

mented, decremented, or left unchanged depending on the value

of the flag. A test for the screen edge is also included. If the tank is

at an edge the direction is reversed by changing the flag value. We
will find the use of flags especially helpful as we expand the num-

ber of objects in our animation.

Pressing the 'q' key terminates the action. Because both ASCII

and non-ASCII keyboard input is employed we need an approach

that does not require double keying to read the input. The func-

tion, rd_non_asky() provides a solution. Through this function we

can read any key that is pressed.

The library function kbhit() tests the keyboard for input. If

none is present its value is zero and the loop continues. If a key has

been pressed the function rd_nonasky() is called. This function,

described in an earlier article, can be employed to read any

keypress, ASCII or non-ASCII as follows:

int asc, sen; /* global declaration */

int rd_non_asky(

)

{

union REGS regs;

regs.h.ah = 0;

regs.h.al * 0;

int86(0xl6, (regs, tregs)

;

asc = regs.h.ah; /* ASCII code */

sen regs.h.al; /* SCAN code */

}

The comments apply to the response to a non-ASCII key,

which are the function and keypad keys and the other special pur-

pose keys. For these keys the scan code is zero. However if an

ASCII key is pressed its integer value of the ASCII character is in

the scan code variable, (sen). A statement such as

char run - toupper(toascii(scn)
))

;

sets the character variable run to that keyed in. This eliminates the

need for getch() to detect an ASCII keypress.

The Computer Journal / #44

/* *# final draw for viewing ** */

setviewport (left col,0. rite col, 20,1)

;

draw bomber
(}

;

/* BOMR.C setviewport (left col-10 ,20, rite col-10. 40,1);
** Construction of a three plane, left-to-right draw bomber

()

;

** aircraft group using setviewport()

.

setviewport (left col+15 ,25, rite col+15. 45,1);
** Turbo C Version 2.0 graphics.
*/

include <stdio.h>

draw bomber
()

;

getch(
)

;

include <graphics.h> closegraph(
)

;

}

/***** insert heading. c *****/

/* == draw bomber as sequence of h/v lines == */

/+ *+ additional declarations in main() ** */ draw bomber
(

)

int i = 54, left col = 10, rite col = 30; {

Betlinestyle(0,0, 1) ; /*

/* ** draw wings ** */

solid line, one pixel wide */

/* ** display exit message ** */ setcolor(l); /* wings, tail are green */

outtextxy(20, 120, "Press any key to exit ."); line (9, 1,9, 8) ; /*

line(10,2,10,8); /*

segment wl */

segment w2 */

/* ** begin animation ** */ line (11,3, 11,8); /* segment w3 */

/* ** define viewport ** */ line) 12,4, 12,8); /* segment w4 */

while (i—) { line(13,5,13,8); /«

line(14,6,14,8) ; /*

segment w5 */

segment w6 */

/* ** draw first bomber ** */ line(14,12,14,14); /* segment w7 */

setviewport(left col, 0, rite col,20,l); line(13,12,13,15); /* segment w8 */

draw bomber (}

;

line(12,12,12,16); /* segment w9 */

/* ** draw second bomber ** */ line(ll,12,ll,17); /* segment wlO */

setviewport(left col-10,20,rite col-10, 40,1); line(10,12,10,18) ; /* segment wll */

draw bomber
()

;

line(9,12,9,19) ; /* segment wl2 */

/* ** draw third bomber ** */

setviewport(left col+15,25,rite col+15. 45,1); /* ** draw tail ** */

draw bomber
()

;

line(l,5,l,15); /*

line(2,5,2,15); /*

segment si */

segment s2 */

/* ** erase bombers ** */ line(3,6,3,14); /* segment s3 */

delay (20)

;

line(4,7,4,13) ; /* segment 64 */

setviewport(left col, 0, rite col,20,l);
clearviewport()

;

/* ** draw fuselage ** * /

setviewport (left_col- 10,20, rite col- 1 , 40,1); setcolor(2); /* fuselage is red */

clearviewport(
)

;

line(8,8,15,8); /* segment fl */

setviewport (left col+15, 25, rite col+15, 45,1); line(4,9,18,9); /* segment f2 */

clearviewport(
)

;

line(0,10,20,10); /* segment f3 */

left col +=5; rite col +=5; line(4,ll,18,ll) ; /* segment f4 */

> line (8, 12, 15, 12); /*

}

segment f5 */

Listing 3. A program illustrating animation of multiple objects using setviewport))

.

The screen coordinates are defined in the first statement of the

loop: a call to library function setviewport(). A delay follows the

tank display to allow time for viewing. The viewport is then cleared

with the function call clearviewport(). An update of the screen

coordinates follow, after which the loop repeats.

Two conditions impose limits to the utility of the viewport for

animation. The first, and least serious, is that a new figure has to

be constructed on each pass through the loop. For a small object,

such as the tank, this is not too terrible. The second constraint,

however, is a tricky one to deal with.

Note that clearviewport() has no coordinates. The function

prototype is "void clearviewport(void)." A little experimenting

shows us that only one viewport, the most recent, will be cleared

by this function call. So how do we display two or more animated

objects at the same time?

Listing 3, BOMR.C, illustrates a solution. In this program an

airplane, defined as a bomber, is created in a function call for

display in a viewport. Construction details are shown in Figure 1.

This one play object is then replicated twice to form a flight group

of three aircraft. The screen display, by the way, is more impressive

than might appear from the sketch.

The replication is formed by simply modifying coordinates in

the function

setviewport (int left, int top, int right, int bottom, clip)

;

The coordinates for the second and third port locations are offsets

from the first. We don't have to do this, but there are benefits to

doing so when we get into interaction with objects on the screen.

The fewer variables to keep track of, the better.

The while loop operation begins by displaying the three aircraft

in their flight formation. There follows a short delay for viewing.

Then each viewport, beginning with the first, is set again, after

which it is cleared.

Not only is this inefficient, it slows down the action in two re-

spects. First, the figure must be re-drawn from scratch on each

setviewport() call, and second, we have to make the call twice.

The viewport does have its place, but there is another, generally

better, approach. We'll discuss it now.

Animation with putimageO

This function was not discussed last time. In Listing 4,

HELI.C,the play object represents a helicopter that we will move

around much like a hummingbird at a sugar water feeder. Con-

struction details are provided in Figure 2.

In contrast to the viewport approach the object is constructed

ahead of any animation and saved in a buffer. This speeds up the

screen action to a significant degree. The listing includes four new

declarations to be added to those given in the heading file:

The Computer Journal / #44

+isr,Hf

1

@
III

||l'

scecc/J troo^virf# Tt~-f

6etlinestyle(0,0,l>; /« solid line

/* »t draw wings t» *l

one pixel Hide */

setcolor (1) |

line(9, 1,9,81;

1 ine (10,2, 10,B)

;

linedl,3,U,8);
lined2,4,12,B);
Hned3,5,13,8);
line(14,6,14,8>;

/« wings, tail are green *1

/* segment wl */

/« segment w2 */

/* segment w3 */

/* segment h4 */

/* segment w5 /
/* segment w6 */

lined4, 12, 14,14); /» segment w7 »/

line(13, 12,13,15); /* segment m8 »/

line(l2, 12, 12,14)

j

I* segment w9 t/

linedl,12,ll,17); /« segment h10 «/

Iined0,l2,10,l8); /* segment wll •/

line(9,12,9,19); /• segment b12 */

/• »t draw tail t* »/

lined, 5, 1,15); /« segment si »/

line(2,5,2,15); /* segment s2 »/

line(3,6,3,14); /• segment s3 «/

line(4,7,4,13); /» segment s4 */

/• tt draw fuselage «« «/

setcolor<2)j /* fuselage is red »/

line(8,B,15,B); /• segment fl »/

line(4,9,18,9)| /• segment f2 •/

linilO, 10, 20,10)| /• segment f3 «/

line(4,ll,18,ll); /• segment f4 •/

line(8, 12, 15,12); /• segment f5 »/

Line assignments for a single aircraft

Offsets for aircrafts two and three based on

starting location of x « 10, y = for

aircraft one:

Aircraft two -10, +20

Aircraft three .. +15, +25

Figure 1. Construction details for flight group of three

aircraft.

char far*heli;
char buffer! 80];
short x,y;
unsigned numbytes;

As with the army tank, the helicopter is constructed from short

segments of straight lines. The construction follows the same pat-

tern as for the tank, that is, set the linestyle, set the color, and draw

the lines. (Although the examples in this article use straight line

constructions we can also use filled circles, polygons, ellipses and

so forth when appropriate.)

With the figure construction defined, our next efforts are to

save it in a buffer. The first step is to determine the size of the

/* HELI.C
** A rudimentry graphics program using putimage () for
** animation.
*/

•include <stdio.h>
linclude <alloc.h>
finclude <graphics .h>

/***** additional declarations in main()
** ***/

char far *heli;

char buffer[80]

;

short x, y;
unsigned numbytes. ch - 0;

/* ** draw initial helicopter figure ** * 1

setlinestyle(0 ,0,1); /* so lid line, one pixel wide */

setcolor (3)

;

/* heli is brown */

moveto(4,0)

;

lineto(5,0)

;

/* segment a */

moveto(0, 1)

;

lineto(9,l)

;

/* segment b */

moveto (4,2)

;

lineto(5,2)

;

/* segment c */

moveto (3,3)

;

lineto(6,3); /* segment d */

moveto (3,4); lineto(6,4); /* segment e */

moveto (3,5)

;

lineto(6,5); /* segment f */

moveto (2,6)

;

lineto(7,6)

;

/* segment g */

moveto (1,7); lineto(2,7)

;

/* segment hi */

moveto(7,7)

;

lineto(8,7)

;

/* segment h2 */

moveto (1,8); lineto(2,8)

;

/* segment il */

moveto(7,8)

;

lineto(8,8)

;

/* segment i2 */

/* *+ determine storage needed ** */

numbytes = imagesize(0,0, 15, 15)

;

/* ** allocate buffer ** */

if((heli = (char far *) maHoc (numbytes)

)

— (char *

<

closegraph()

;

|NUIX)

printf ("Not enough memory for storage ");

exit(0);

}

getimage (0,0, 15, 15, heli); /* save the image */

clearviewport () ; /* clear screen of saved image */

cleardevice ()

;

setcolor (3]
.

outtextxy(10,10,"Demo using putimage "

)

x = getmaxx()/2; y = getmaxy()/2;
putimage(x,y ,heli,XOR_PUT)

;

outtextxy(10 ,getmaxy()-50
,

"q=exit,h=left, j=down,k=up, l=right" ;

/* ** perform animation ** */

while (ch 1= 'q ') i

ch getch ()

;

/* ** 1st erase at last position ** */

putimage (x, y , heli , XOR_PUT
)

,

switch (ch) <

case '
h

' : x -» 2; break; /* 2 pixels left */

case '
1

' : x +=2; break; /* 2 pixels rite */

case '
j

• s y +=2; break; /* 2 pixels down */

case '
k

' : y ->2; break;

>

new position

/* 2 pixels up */

/* ** redraw at ** */

putimage(x,y,heli,XOR PUT),

}

/* ** restore original mode * * */

closegraph(
)

;

}

Listing 4. Program illustrating simple animation using
putimage

()

.

The Computer Journal / #44

/* BOMBER.

C

getimagefO, 0,20, 20, bomr) ; /* save the image */
** Construction of a three plane, left-to-right cleardevicef

)

;

** aircraft group using the plane of planes2.c.
** Development program for BOMR.C /* ** display exit text on screen ** */
*/ outtextxy(50, 160, "Press any key to exit");
tinclude <stdio.h>
f include <alloc.h> /* *+ begin animation ** */

ff include <graphics.h> do {

/***** global declarations *****/ /* ** draw first bomber ** */

int leftbd_col = 10,leftbd_top = 0, riteb_col = 30; leftbel_col = leftbd_col; leftbel_top - leftbd_top;
int leftbel_top, leftbe2_top, leftbe3_top; draw bomber ()

;

int leftbel col, leftbe2 col, leftbe3_col;
char far *bomr; /* ** draw second bomber ** */

leftbd col -« 10; leftbd_top += 20; riteb_col -= 10;
/»»»»» insert heading. c *****/ leftbe2 col = leftbd_col; leftbe2_top « leftbd_top;

draw bomber ()

;

/* ** additional declarations in main ** */

int i - 20; /* ** draw third bomber ** */
char run - ' '

;

leftbd col += 25; leftbd top += 5; riteb col += 25;
unsigned numbytes; leftbe3_col - leftbd_col; leftbe3_top = leftbd_top;
char buffer [80]; draw_bomber ()

;

delay(40)

;

/* ** draw initial bomber figure ** */ clr bomr s ()

;

setlinestyle(0,0,1) ; /* solid line, one pixel wide */

setcolor(2); /* fuselage is red */ /* ** advance to next position ** */
/* ** draw wings and tail ** */ riteb col -= 5; leftbd_col -= 5; leftbd_top = 0;

setcolor(l); /* wings, tail are green */

moveto(9,l); lineto(9,8); /* segment wl */ if(riteb_col >= 299) {

moveto(10,2) lineto(10,8) ; /* segment w2 */ leftbd col - 10, riteb col - 30;
moveto (11,3) linetof 11,8) ; /* segment w3 */

>

moveto(12,4) linetof 12, 8) ; /* segment w4 */ if(kbhit() == 0) continue;
moveto (13, 5) lineto(13,8) ; /* segment w5 */ run = (toupper

(
getch ()))

;

moveto(14,6) linetof 14,8) ; /* segment w6 */ if (run -» 'Q') i = 0;
moveto(14,12); lineto(14, 14) ; /* segment w7 */

} while (i—);
moveto(13,12) ; lineto(13, 15) ; /* segment w8 */ getchf); closegraphf

)

;

moveto(12,12) ; lineto(12, 16) ; /* segment w9 */
}

moveto(ll,12) ; lineto(11, 17) ; /* segment wlO */

moveto) 10, 12)
; lineto(10, 18) ; /* segment wll */ /* -= erase bombers -= */

moveto(9,12) ; lineto(9, 19) ; /* segment wl2 */ clr bomrsf

)

moveto(l,5); lineto(1, 15) ; /* segment si */
<

moveto(2,5); lineto(2, 15) ; /* segment s2 */ /* ** erase first bomber ** */

moveto(3,6); lineto(3, 14) ; /* segment s3 */ putimage(leftbel col, leftbel top, bomr, XOR PUT);
moveto(4,7); linetof 4, 13) ; /* segment b4 */ delay (10)

;

/* ** draw fuselage ** */ /* ** erase second bomber ** */

setcolor(2); /* fuselage is red */ putimage(leftbe2 col,leftbe2 top, bomr, XOR_PUT
)

;

moveto(8,8); lineto(15,8) ; /* segment fl */ delay (10)

;

moveto(4,9) ; lineto(18,9) ; /* segment f2 */

moveto(0,10) ; lineto(20, 10) ; /* segment f3 */ /* ** erase third bomber ** */

moveto(4,ll) ; linetof 18, 11) ; /* segment f4 */ putimage(leftbe3 col,leftbe3 top, bomr, XOR_PUT
)

;

moveto(8,12) ; lineto(15, 12) ; /* segment f5 */ delay (10)

;

/* ** determine storage needed ** */
}

numbytes = (unsigned int) imagesizef 0, 0, 20, 20)

;

/* == draw bomber from saved image data == */

draw_bomber (

)

/* ** allocate buffer ** */
{

bomr = (char *)malloc(numbytes)

;

putimage(leftbd col, leftbd top, bomr, COPY_PUT
)

;

}

Listing 5. Program illustrating animat ion with multiple calls to putimage().

buffer. This is performed with the statement

numbytes = imagesize(0,0, 10, 10)

;

There is little danger of overflowing memory with such a diminu-

tive object but for safety we hedge with

if(heli = (char *)malloc(numbytes) == (char *)NULL)

{

closegraph(
) ; /* return to text mode */

printf("Not enough memory for storage.");

exit(0);

}

Assuming all is well the next step is to save the image now

residing in the buffer. I find the name of the saving function, geti-

mage(), to be confusing. But that's the way it is.

getimage (, , 10,10, heli) ; /* save the image */

and now comes the bad part:

clearviewport() ; /* clear screen of the saved image */

The "bad" designation arises from a momentary flash that ap-

pears at the upper left corner of our screen. The flash from one

image isn't all that bad, but wait until we have or six or eight.

The Computer Journal / #44

setlinestyle(0,0, 1) ;

setcolor (3) ;

moveto (4,0)
moveto (0,1)
moveto (4,2)
moveto (Z,Z)
moveto (3,4)
moveto (3,5)
moveto<2,6)
moveto (1,7)
moveto(7,7)
moveto <1 ,8)

moveto (7,B) ;

/* solid line, one pixel wide */
/* heli is brown */

lineto(5,0); /* segment a */
lineto(9,l); /* segment b */
lineto(5,2); /* segment c */
lineto(6,3); /* segment d */
1 ineto(6,4) ;

/* segment e */
lineto(6,5); /* segment i */
lineto<7,6); /* segment g */
lineto(2,7)s /* segment hi */
lineto<8,7>; /* segment h2 */
lineto(2,8); /* segment il */
lineto(8,8); /* segment i2 */

Figure 2. Helicopter construction from line segments.

The creation of each new object follows the exact same steps as

just illustrated for "heli." Each additional object must be declared

with a far pointer and the object name. Other than that no new

declarations are required.

This program differs from ARMY_TNK in several respects.

Instead of a free wheeling while loop we will position the heli

ourselves from the keyboard. Instruction text for its control is dis-

played on the screen.

The on-screen display is accomplished by a call to putimage().

This function requires four arguments:

putimage(int left, int right, void far *image, int action);

/* SCORE.

C

** Illustrating viewport text display with
** outtextxy() using the TURBO C Ver. 2.0
** library routines.

I include <stdio.h>
f include <conio.h>
•include <graphics.h>

/***** global declarations *****/

int score = 0, score_flg ~ 1}

char score buf[80];

/***** insert heading. c *****/

/***** additional declaration in main()

int i = 20;

/* ** begin animation ** */

/* ** define viewport ** */

while (i—) {

if(score_flg ==1) /* flag is set if score updated */

clearviewport() ; /• clear for score update */

setviewport (, 0,319, 10,0) ; /* restore port */

sprintf (score_buf , "You have »d points .", score)

;

outtextxy(0,0,score_buf) ; /* display updated score */

score_flg "0; score_up();
delay (30);

>

moveto(20,S0) ; setcolor(2);
outtext("Press any key to exit.");

/* ** the message will not print with a 1 in ** */

/* ** setviewport 0,0,319,10,0). Try itl ** */

getch()

;

closegraph(
)

;

/* == update score == *>

score_up(

)

{

score += 100; score

>

fig = 1;

Listing 6. Illustrating use of sprintf () and outtextxy in

viewport for graphic programs requiring text

The putimage
(

) function prototype

:

void far putimage (int left, int top.

ACTION WHAT IT DOES

void far *image buffer, int action);

COPY_PUT Saved image is drawn at the specified screen location. An

existing image is overwritten.

XOR_PUT Each pixel of the saved image is exclusive-ORed with its

respective pixel of the currently displayed image. If an

image exists, it is erased. If an image does not exist it

is drawn.

OR_PUT Pixel values from the saved image are logically ORed with
existing pixels in the area where an image is being drawn.

AND_PUT An image iB drawn by performing a logical AND of the existing

pixel value with the corresponding pixel in the saved image.

NOT_PUT Each pixel bit of the saved image is logically inverted.

The inverted values are written over existing pixels in the area

where an image has been drawn. Effect is to change its color.

Table 1. Application of the putimage () action constants to saved and

on-screen images.

The two integers define the upper left corner of

the location on screen, in SCREEN (not view-

port!) coordinates. The action argument is one of

five described in Table 1. The two we are con-

cerned with in our animations are COPY_PUT
and XOR_PUT. We can use either of these to

display the object, then use XOR_PUT to erase

it. XORPUT performs a pixel exclusive-OR

which simply blends the object in with the back-

ground.

The use of outtextxy() will be discussed in the

next section. In this routine we display a message

beginning with column 10, row 10 that this is a

demo of putimage. A second message near the

screen bottom instructs us on how to control the

heli and exit the program. In between we use pu-

timage() to initially display the heli.

The while loop remains active until we press

the 'q' key. The opening statement waits for a key

press, then erases the object. Following a press of

one of the four positioning keys the object is re-

drawn at its new position. The program then

awaits a new key press before continuing on.

The Computer Journal / #44

There are several good features of putimage(). The first is

speed, it is quite fast. The second is we can erase it anytime with a

subsequent call, which means we can maintain multiple images on

screen. A third is that with the figure's construction saved in the

buffer we can sprinkle the same object all over the place ifwe need

to do so. And go back and erase them all in a timely manner.

There are some qualities not so good. The most obvious is the

initial screen flash. The other most apparent arises when one of

our objects intersects another. Without corrective effort our

screen can quickly become littered with bits of garbage arising

from the encounter. We will deal with this later when we look at

multiple display objects.

Mixing calls to setviewport() with putimage() where both in-

volve changing coordinates does not appear to work very well. If

the initial image is created and displayed using getimage() and

putimage() the first pass through will find the object correctly posi-

tioned on the screen. What I have observed then is the display of

another object) using setviewport() and clearviewport() that ap-

pears to add offsets to the screen coordinate variables for the

other object(s). They simply show up somewhere else on the

screen. There is, none-the-less a needed application of setview-

port() for the display of text. This is discussed in the next section.

Combining Text With Graphics

We cannot use printf() when in the graphics mode. The two

library functions available for strings are outtextQ and outtextxyQ.

These are identical except that the latter includes the column (x)

and row (y) coordinates in the call.

The outtext() function prototype is

void far outtext (char far *textstring)

;

Outtext() displays a null terminated string, that is, a character ar-

ray terminated in a null (\0), at the current screen position. The
'\0' character is provided by the function. The textstring may be

defined in an array, such as

char text[] "Just call me a text string.";

outtext (text)

;

or included in the function call

outtext("Gosh, I feel all strung out.");

The outtextxy() prototype

void far outtextxy (x,y, char far *textstring)

;

is similar to outtext();. Both functions display text in various fonts,

sizes and colors. Table 7 of the previous article summarized the

library functions for graphics mode text output. A description of

these related functions is an article subject in itself and is not rele-

vant to the topic at hand. What is relevant are stumbling blocks to

be overcome in applying these two functions to our action pro-

grams.

The first is a lack of formatting. Recall that with printfQ we can

write a statement such as

printf("My name is %s.\n" , name)

;

We can still display formatted strings but we must first use

sprintf() in a manner of this sort:

sprintf (name_buf , "My name is %s.\n",name)

;

following which we can call

or

outtext (name_buf

)

outtextxy (x , y , name_bu f

)

By the way, '\n" is supposed to work with sprintf(), and it does in

the text mode but not in the graphics, from my own experience.

Well, making use of sprintf() doesn't appear too complex, and

in fact it is not. But there is more to follow. In a game we mostly

will want a banner somewhere displaying the player's score. Sup-

pose it were to read

"Your score is now 1000"

and we do an update in steps of 100 with "score + = 100;" some-

where in our program. We begin with

sprintf (score_buf, "You have %d points .", score
)

;

with the assumption we can follow with

outtextxy (x, y, score_buf
}

;

Surprise. The score updates all right. Only it quickly becomes

unreadable because the update writes over the existing. I found no

indication that this difficulty would arise in any of the references I

have. It took several hours of angry exasperation to resolve the

problem.

My initial attempt was to simply employ sprintf() to fill the

buffer with a blank expression equal in length to the text in hopes

that overwriting the text this way would wipe it out. Nope.

The ultimate solution was to enter the text in a viewport, dis-

play it, and, following each update, clear the viewport and rewrite

it. The code has this form:

setviewport (, 0,319, 10, 1) ; /* full screen width is not
necessary */

sprintf ((score_buf , "You have %d points .
" , score)

;

outtextxy (0,0, score_buf)

;

This can be incorporated in a loop with selection logic for up-

dating only as the situation requires. For example:

while(i) (/* game maintenance loop */

if(score_flg == 1) { I* set flag if score updated */

clearviewport(
) ; /* clear for score update */

setviewport (, , 319, 10, 1) ; /* restore viewport */

sprintf (
(score_buf, "", score) ; /* update the score */

outtextxy (0, 0, score_buf) ; /* display updated score */

score_flg =0; } /* reset the score flag */

If anyone has a better solution I would appreciate knowing of it.

Several texts can be included in a single loop. There are five for

the game I wrote. Each has its own sprintf() and outttextxy() defi-

nition. The viewport is full screen width by 20 pixels high.

Note that in this example I have set the clip value to 1. The

program of Listing 6 has instead. What I discovered, the hard

way as is typical, is that unless the clip integer is zero outtextQ will

not function outside the viewport. Now that goes against some

other things I have done, which leaves me scratching my head over

reasons for. In the action game to be described in my next segment

I display the scoring in a viewport very similar to this example and

project images all over the screen. But not text.

(Continued on page 26)

10 The Computer Journal / #44

Multitasking in Forth

With New Micros F68FC11 and Max-Forth

by Matthew Mercaldo

Some time ago I was working on a project for a small engi-

neering firm. A friend of years past and I were developing a

networked data acquisition system in Forth. This was the first

time I had ever heard of Forth. Previous to this project the

worlds of PASCAL, C and traditional assembler were the only I

knew. Forth was so innovative, flexible and what my friend called

extensible; truly a coherent medium to solve problems. Surely the

only way to code! "The world would soon realize this wouldn't

it?" My question would encourage my war torn friend. We'd

fought for Forth on this project. The combination of my friend's

wisdom in such matters, and my enthusiasm for this wondrous

new way to solve problems won upper management to our camp.

The speed at which we could develop sound code astonished me,

and caused our immediate management embarrassment. Their

alphabet never got past C and the innovation beyond. It was clear

to me that Forth gave me the whole alphabet. My friend would

always do alchemy with defining words, he proved to me that the

simplest solution was the best. (Our product's performance dem-

onstrated this.) There was always something new to learn. I

would understand the implementation of concept in Forth, then I

would grasp how a new piece of my friend's code worked. One
concept that I understood, yet always amazed me was multi-

tasking in Forth.

I recently decided to work through multitasking in Forth util-

izing Max-Forth on the F68HC11 by New Micros Inc. The fol-

lowing article will detail the inner workings of two multitasking

kernels along with some required support routines. I hope you

enjoy experimenting with this paradigm as much as I have.

First I'll give you some conceptual jargon. Forth systems are

inherently reentrant. This means that words written in a Forth

kernel utilize stacks and registers; memory which can be retained

by that context. Forth caters to multitasking in that all context

specific information is referenced via the "UP" or User Pointer.

This UP pointer points to a block of information. This block or

User Area contains pointers to objects such as the Terminal In-

put Buffer, pointers to vocabularies, as well as a Dictionary

Pointer, vectors pointing to Key and Emit routines, the original

reset states for data and return stacks, etc. (See Figure one for

Max-Forth's User area structure.) We can have many of these

blocks, each block associated with a different instance of pro-

gram, and a mechanism to switch to the next block upon request.

This is the basis of a multitasking system in Forth. In order to

facilitate this, Forth implementations will allow space in each user

area for pointers to the next task user area and previous task user

area. Max-Forth on the F68HC11 does this. To make a multi-

[Text continued on page 15]

Figure 1 : Max-Forth's User area structure.

Max-Forth User Area Structure Members Required for Multitasking
Address (Hex) Description

00:01 Word Pointer
02:03 Intruction Pointer
04:05 User Pointer
06:07 Next Task Pointer
08:09 Previous Task Pointer
0A:0B Task Priority
0C:0D RPSAVE (this task's Stack Pointer)
0E:0F R0
10:11 SO

16:17 User Key Vector (Assembler Routine)

18:19 User Emit Vector (Assembler Routine)

1A:1B User ?Terminal Vector (Assembler Routine)

1C:1D Terminal Input Buffer Pointer (TIB)

IE: IF Terminal Input Buffer Size (C/L)

22:23 User PAD

2C:2D Dictionary Pointer (DP)

34:35 VOC-LINK
38:39 UFORTH Link
40:41 UEDITOR Link
46:47 UASSEMBLER Link

4C:4D UABORT
54:55 WARNING

6A:6B CONTEXT
6C:60 CURRENT

Figure 2: Memory allocation routines and hardware definitions.

HEX

050 100 TIB 21

TIB 28 + 010 + 022 !

FORGET TASK (Prepare to move dp to external rom.
)

4000 (The size of the ROM.)

4000 (The starting address of ROM.)

DUP 4 + DP 1 (Put dictionary in external rom.)

(4 bytes reserved at start of rom for)

(
the autostart pattern followed by)

(the cfa of the startup word.
)

(Now we can start defining new words.
)

DUP CONSTANT ROM-Start
+ CONSTANT ROM-Lijnit

HERE ROM-Limit HERE - ERASE (Erase rom; unused space
)

(at end is OUs)

DECIMAL
20000 CONSTANT /10MS (2000 ticks of free-running counter)

HEX
' /10MS (026 1 (Point address 26 at eclock ticks per)

(10 me. Contents of 26 was supposed to
)

(time writes to EEPROK but version 3.3
)

(F66HC11 has bug—it uses 26 as a ptr.
)

(RAM)

(The first 256 bytes of RAM is on the 68HC11 chip and can be
)

[Continued]

The Computer Journal / #44 11

[Figure 2 continued]

(accessed more quickly than external RAM.)

(Variables are assigned to internal ran by SBYTE or $BYTES or)

(to external ran by BYTE or BYTES . For example

,

)

{ SBYTE LOCK)

(allocates a byte of internal ram for the RLOCKS and)

{ 12 BYTES BUFFER
)

(allocates 12 bytes of external ran to data named BUFFER
)

0073 CONSTANT $RAM-Start
0098 CONSTANT $RAM-Lxmit
VARIABLE 'SRAM

$RAH-Start ' $RAM 1

(first user)

($RAM-Limit-[S0]-030h bytes)

(ptr to next free byte of lov ram)

: RESET' $RAM $RAM-Start ' $RAM 1 ;

allot-Sran (n — ; allot n bytes of direct ran)

'$RAM +1 SRAM-Linit 'SRAM 8 U< ABORT" no more internal ram"

SBYTES (bytes <name>
SBYTE (<name> —)

0200 CONSTANT RAM-Start
0FPF CONSTANT RAM-Limit

) '$RAM CONSTANT
1 SBYTES ;

allot-$ran ;

(Where to start ram allocation
)

(Ram allocation limit)

VARIABLE 'RAM (pointer to next available external ram location)

RAM-Start 'RAM !

RESET 'RAM (—)

RAM-Start 'RAM 1

EE! (n addr —)

2DUP # *

IF 2DROP { was already equal to n
)

ELSE
OVER 100 / OVER EEC! 1+ EEC 1

THEN ;

Setting an Interrupt Vector
)

Define each interrupt handler using CREATE, so that the name
of the interrupt handler leaves the address of the code.
Install the handler into the interrupt vector table by

<code address> <vector name> VECTOR
For example, to create pulse interrupt handler:

CREATE PULSAR
ASSEMBLER
<code>
RTI

Assume that the interrupt vector for PULSE is at address FEEE
in the 68HC11. To get the word >PULSE:

FFFE « CONSTANT >PULSE
Max-Forth points the interrupt vectors into the ll's EEFROM

To install the PULSE interrupt handler:
: INSTALL-PULSAR

PULSAR >PULSE VECTOR ;

The system reset code should then execute INSTALL-PULSAR.

: aHot-ram (n — ; allot n bytes of external ram)

'RAM +1 RAM-Limit 'RAM U< ABORT" no more external ram" ;

: BYTES (bytes <name> —) 'RAM « CONSTANT allot-ram ;

: BYTE (<name> —) 1 BYTES ;

: VECTOR (code-addr secondary-vector — ;)

7E OVER EEC!
{
put jump opcode

)

1+ EE! ; (put address)

Figure 3:Code for timed interval tasker

(Multitasking module for 68HC11 : Interval Preemtive context switch
)

(Matthew Mercaldo
(41 South Park Street
(Oconomowoc, Wisconsin 53066)

(MZM 1/27/90
)

HEX
(MaxForth world constants

)

00 CONSTANT W
02 CONSTANT IP

04 CONSTANT UP

(Word Pointer
)

(Instruction Pointer)

(User Area Pointer)

(Task area constants for control type task)

(I subtract 6 because of offset from start of this User Area)

06 6 - CONSTANT NEXT_TASK
08 6 - CONSTANT PREV_TASK
0A 6 - CONSTANT PRIORITY
0C 6 - CONSTANT RPSAVE
0E 6 - CONSTANT R0
10 6 - CONSTANT DATA STACK

(Pointer to the next task)

(Pointer to the previous task)

(Task priority; not implemented

(This context's SP
)

(Return stack base)

(Data stack base)

(used to hold the SP temporarily in setting task ready to run)

76 6 - CONSTANT STACK_HOLD

(vocabulary and link constants)

34 6 - CONSTANT UVOC-LINK
40 6 - CONSTANT UEDIT-LINK
46 6 - CONSTANT UASSEM-LINK
6A 6 - CONSTANT UCONTEXT
6C 6 - CONSTANT UCURRENT

{ some 68HC11 hardware definitions)

B024 CONSTANT TMSK2
B025 CONSTANT TFLG2
80 CONSTANT TOI
80 CONSTANT TOF

CODE-SUB EI (enable interrupts)

ASSEMBLER CLI RTS END-CODE

CODE-SUB DI (disable interrupts
)

ASSEMBLER SEI RTS END-CODE

(Set terminal task to point to itself.)

(This allows tasks to be linked into the round robin)

UP % DUP NEXT_TASK + !

UP « DUP PREV_TASK + !

(Given the CFA of a forth word in X; NEXT2 will execute that word.

(Does what MaxForth does, except now I know where it lives.
)

CREATE NEXT2 (— ; X has CFA of word to run)

ASSEMBLER
W " STX

,X LDX
,X JMP

(Sets the new task's processor stack.)

(This contains the task's context ready for a hit by pause.)

CODE SET_UP_CONTEXT (cfa task_blk —
)

ASSEMBLER
, Y LDX (task block base into register X)

STACK_HOLD , X STS (remember what the SP is
)

R0 , X LDS (
get where rtn stack

)

NEXT2 * LDX PSHX (PC: next2 is first on stack
)

,Y LDX
PSHX

t LDX
PSHX

DATA_STACK ,X LDX (get data stack and stack as Y)

PSHX (get cfa and stack as X
)

(stack a and b)

40 # A LDA A PSH (stack cc; inhibit xirq
)

PSHX
PSHX

(stack IP and W
)

,Y LDX RPSAVE ,X STS (set rp save pointing to where SP is
)

STACK_HOLD ,X LDS (restore original stack
)

INY INY INY INY
NEXT " JMP

(clean up forth data stack

END-CODE

(Connects the vocabulary pointers for this task.)

(These are not neccessary for a control task
)

(but are added if another terminal task is wanted.

(To make a terminal task... connect in new :)

(UPAD, UTIB, UC/L.
)

(To be careful, revector key and emit.
)

CODE SET_VOC (task_blk — task_blk
)

ASSEMBLER
,Y LDX

UVOC-LINK , X LDD
UEDIT-LINK ,X LDD
UASSEM-LINK ,X LDD
UCONTEXT ,X LDD
UCURRENT ,X LDD
NEXT * JMP

END-CODE

,Y ADDD
,Y ADDD

UVOC-LINK ,X STD
UEDIT-LINK ,X STD

,Y ADDD UASSEM-LINK ,X STD
,Y ADDD UCONTEXT ,X STD

,Y ADDD UCURRENT ,X STD

SET_R0 (task_blk — taskjblk
)

DUP R0 + 'RAM SWAP I

SET SO (task_blk — taok_blk)

[Continued]

12 The Computer Journal / #44

[Figure 3 continued]

DUP DATA_STACK + 'RAH t SWAP 1 ; ,Y LDX NEXT_TASK ,X LDD PREV_TASK ,X LDX
NEXT_TASK ,X STD

CREATE (LINK_TASK) (task_blk — task_blk
)

(points this task_blk to the terminal task_blk)
,Y LDX PREV_TASK ,X LDD NEXT_TASK ,X LDX

ASSEMBLER PREV_TASK ,X STD

UP " LDZ PREV_TASK , X LDD
,Y LDX PREV_TASK ,X STD INY INY

UP " LDD NEXT_TASK ,X STD RTS

RTS
CREATE (Bleep) (— ;puts self to sleep on next pause)

CODE LINK_TASK (task_bock — task_block ; connects) ASSEMBLER
(this User Area into list

)
UP - LDX HEXT_TASK ,X LDD PREV_TASK ,X LDX

ASSEMBLER NEXT_TASK ,X STD
(Limt_TASK) " JSR
HEX! ' JMP UP " LDX PREV_TASK ,X LDD NEXT_TASK ,X LDX

END-CODE PREV_TASK , X STD
RTS

: : (ofa stack <name> — ; create a task)

(On en—und line to create a task)
CODE sleep (— ;puts self to sleep)

(' <word> CFA <stack_size> : : <task_name> ; ;)
ASSEMBLER

(:: is the task definition word.)
(sleep) " JSR

(It allots the proper number of bytes for a task__blk.) NEXT " JMP

(It allots 100 hex bytes for return stack.) END-CODE

(It allots the desired bytes for data stack.)

'RAM t DUP 200 BYTES CODE WAKE (task_blk — ; wake this task
)

UP (SWAP 100 6 - CMOVE ASSEMBLER
SET_R0 (WAKE) " JSR
SWAP allot-ram NEXT ' JMP
SET_S0 END-CODE
LINK_TASK
SET_VOC CODE SLEEP (task_blk — ; sleep this task)

SET_UP_CONTEXT ; ASSEMBLER

(to set task running , do WAKE command)
(SLEEP) " JSR
NEXT " JMP

tit} (— t added for continuity of syntax
)

END-CODE

(Pause switches context.) (Stops the tasking interrupt)

(The registers are stacked by interrupt.)
: TASKER_STOP (—)

(The Forth IP and W pointers are stacked.)
TMSK2 C« TOI 1 - AND TMSK2 CI ;

(The SP is saved in this tasks context.) (Starts the tasking interrupt)

(The next task SP is installed.)
! TASKER_GO (—)

(IP and W for next task are taken from the next task's) TMSK2 C« TOI OR TMSK2 CI ;

(stack. Next task is resumed by RTI
)

CREATE 'PAUSE (— ; context svitch) (High level forth task wake and task sleep
)

ASSEMBLER : WAKE (task_blk —)

(acknowledge the timer overflow interrupt)
TASKER_STOP WAKE TASKER_GO ;

TOF I A LDA TFLG2 * A STA
: SLEEP (task_blk —)

(stack IP and W for this task)
TASKER_STOP SLEEP TASKER_GO ;

IP " LDX PSHX
W * LDX PSHX (ffde points to eeprom inside 68hcll)

(there a jmp can be added to the interrupt
)

(set this task's Stack pointer into RPSAVE
)

FFDE t CONSTANT >TOI

UP " LDX
RPSAVE ,X STS (Tasking_on sets interrupt vector and

)

(turns on PAUSE interrupt
)

(Set next task)
: TASKIHG_ON

NEXT_TASK ,X LDX DI

UP " STX 'PAUSE >TOI VECTOR
TOI TMSK2 CI

(restore next task's Stack pointer)
EI ;

RPSAVE ,X LDS
(restore next task ' s W and IP)

PULX W * STX (Test cases)

PULX IP " STX
VARIABLE TIMER1

(resume execution of next task)
TIMER1 1

RTI VARIABLE TIMER2
TIMER2 1

(Wake connects the task_blk to the round robin)
: TEST1 EI 1 TIHER1 +1

CREATE (WAKE) (task_blk —)
BEGIN 1 TIMER1 +1 AGAIN ;

ASSEMBLER
,Y LDX NEXT_TASK ,X LDX PREV_TASK ,X LDX : TEST2 EI 1 TIMER2 +1

,Y LDD NEXT_TASK ,X STD BEGIN 1 TIMER2 + 1 AGAIN ;

,Y LDX NEXT_TASK ,X LDX PREV_TASK ,X LDD
,Y LDX PREV_TASK ,X STD (create task one with 20 data stack bytes running TEST1)

' TEST1 CFA 20 :: TASK1 ;;

NEXT_TASK ,X LDX ,Y LDD PREV_TASK , X STD (start task one running)

TASK1 WAKE
IHY INY
RTS (create task two with 20 data stack bytes running TEST2)

' TEST2 CFA 20 :: TASK2 ;;

(Sleep disconnects the task blk from the round robin.) (start task two running
)

(The task_blk points to it's previously connected tasks. TASK2 WAKE

(but they no longer point to it.)

CREATE (SLEEP) (task_blk —) (Do a TIMER1 C . a few times to see task one running
)

ASSEMBLER (Do a TIMER2 € . a few times to see task two running)

The Computer Journal / #44 13

Figure 4:Code for the cooperative tasker.

(Multitasking module for 68HC11 : Cooperative Ta&ker)

(Matthew Mercaldo
(41 South Park Street
(Oconomowoc , Wisconsin

(MZM- J/3/90)

HEX
(MaxForth world constants)

00 CONSTANT H
02 CONSTANT IP
04 CONSTANT UP

)

)

53066
)

(Word Pointer
)

(Instruction Pointer)

(User Area Pointer)

(Task area constants for control type task)

06 6 - CONSTANT NEXT TASK (

OS 6 - CONSTANT PREV TASK (

0A 6 - CONSTANT PRIORITY (

OC 6 - CONSTANT RPSAVE (

0E 6 - CONSTANT R0 (

10 6 - CONSTANT DATA_STACK (

(Pointer to the next task
)

Pointer to the previous task
)

Task priority; not implemented
This context ' s SP

)

Return stack base
)

Data stack base
)

(used to hold the SP temporarily in setting task ready to run
)

76 6 - CONSTANT STACK_HOLD

(vocabulary and link constants)

34 6 - CONSTANT OVOC-LINK
40 6 - CONSTANT UEDIT-LINK
46 6 - CONSTANT UASSEM-LINK
6A 6 - CONSTANT UCONTEXT
6C 6 - CONSTANT UCURRENT

(set terminal task to point to itself
)

(this allows tasks to be linked into the round robin)

UP t DUP NEXT_TASK + I

UP C DUP PREVJTASK + I

(Given the CFA of a forth word in X; NEXT2 will execute that word.
)

(Does what MaxForth does, except now i know where it lives.)

CREATE NEXT2 (— ; X has CFA of word to run
)

ASSEMBLER
W " STX

,X LDX
,X JMP

(Sets the new task's processor stack.
)

(This contains the task's context ready for a hit by pause.
)

CODE SET_UP_CONTEXT (cfa taskblk —
)

ASSEMBLER
,Y LDX (task block base into register X

)

STACK_HOLD ,X STS (remember what the SP is
)

R0 , X LDS (get where rtn stack
)

NEXT2 t LDX PSHX (PC : next2 is first on stack)

,Y LDX DATA_STACK ,X LDX (
get data stack and stack as Y)

PSHX

t LDX
PSHX

40 i A LDA

PSHX
PSHX

PSHX (get cfa and stack as X)

(stack a and b
)

H (stack cc; inhibit xirg
)

(
stack IP and W

)

,Y LDX RPSAVE ,X STS (set rp save pointing to where SP is

STACK_HOLD , X LDS (restore original stack
)

INY INY INY INY
NEXT " JMP

(clean up forth data stack

END-CODE

(Connects the vocabulary pointers for this task)

(these are not neccessary for a control task)

(but are added if another terminal taBk is wanted

(To make a terminal task . . . connect in new :
)

(UPAD, UTIB, UC/L.
)

(To be careful, revector key and emit.)

CODE SET_VOC (task_blk — task_blk)

ASSEMBLER
,Y LDX

UVOC-LINK ,X LDD
UEDIT-LINK ,X LDD
UASSEM-LINK ,X LDD
UCONTEXT , X LDD
UCURRENT ,X LDD
NEXT " JMP

END-CODE

,Y ADDD
,Y ADDD

UVOC-LINK ,X STD
UEDIT-LINK ,X STD

,Y ADDD UASSEM-LINK ,X STD
,Y ADDD UCONTEXT ,X STD

,Y ADDD UCURRENT ,X STD

: SET_R0 (task_blk — task_blk
)

DUP R0 + 'RAM C SWAP 1

: SET_S0 (task_blk — task_blk)

DUP DATA_STACK + 'RAM t SWAP I ;

CREATE (LINK_TASK) (taak_blk — task_blk
)

(points this task_blk to the terminal task_blk
)

ASSEMBLER
UP " LDX PREV_TASK ,X LDD

,Y LDX PREV_TASK ,X STD
UP " LDD NEXT_TASK ,X STD
RTS

CODE LINK_TASK (task_bock — task_block
)

ASSEMBLER
(LINK_TASK) " JSR
NEXT " JMP

END-CODE

: : : (cfa stack <name> — ; create a task)

(On command line to create a task)

(• <word> CFA <stack_size> : : <task_name> ; ;)

(: : is the task definition word.)

(It allots the proper number of bytes for a task_blk.
)

(It allots 100 hex bytes for return stack.
)

(It allots the desired bytes for data stack.
)

'RAM t DUP 200 BYTES
UP C SWAP 100 6 - CMOVE
SET_R0
SWAP allot-ram
SET_S0
LINKTASK
SET_VOC
SET_UP_CONTEXT ;

(to set task running, do WAKE command
)

: ; ; ; (— ; for syntactical continuity
)

(Pause switches context.)

(The registers are stacked by interrupt.
)

(The Forth IP and W pointers are stacked.
)

(The SP is saved in this tasks context.
)

(The next task SF is installed.
)

(IP and W for next task are taken from the next task ' 8)

(stack. Next task is resumed by RTI
)

CREATE >PAUSE> (— ; context switch
|

ASSEMBLER
(JSR has put PC on the stack)

PSHY (Y on next)

PSHX (X on next)

A PSH (A on next
)

B PSH (B on next
)

TPA A PSH (CC on next
)

IP * LDX PSHX
W " LDX PSHX

UP " LDX
RPSAVE ,X STS

(IP on next)

(W on next
)

(remember SP for this task area
)

(in RPSAVE)

NEXTTASK ,X LDX (Get pointer to next task area
)

UP " STX (set the UP pointer pointing to next task

RPSAVE , X LDS (get next task's SP from next task's RPSAVE
)

PULX W " STX
PULX IP " STX

(restore w
)

(reBtore IF
)

RTI { restore registers
)

CODE PAUSE (— ; switch context to next task in round robin)

ASSEMBLER
>PAUSE> " JSR (Bwitch context

)

NEXT * JMP (The above JSR puts PC here.)

(This PC is that of the new context.
)

END-CODE

{ Wake connects the task_blk to the round robin)

CREATE (WAKE) (taskblk —
)

ASSEMBLER
,Y LDX NEXTTASK ,X LDX
,Y LDD NEXTTASK ,X STD

PREV_TASK ,X LDX

,Y LDX
,Y LDX

NEXT_TASK ,X LDX
PREV TASK , X STD

PREV TASK ,X LDD

NEXT TASK ,X LDX

INY INY
RTS

,Y LDD PREVJTASK ,1 STD

(Sleep disconnects the task_blk from the round robin.
)

(The task blk points to it's previously connected tasks,)

(but they no longer point to it .)

CREATE (SLEEP) (taak_blk —
)

ASSEMBLER

[Continued]

14 The Computer Journal / #44

[Figure 4 continued]

,Y LDX NEXT_TASK
NEXT_TASK ,X STD

,X LDD PREV_TASK ,X LDX

,Y LDX PREV_TASK
PREV_TASK ,X STD

,X LDD NEXT_TASK , X LDX

INY INY
RTS

CREATE (sleep) (— ;puts se

ASSEMBLER
OP " LDX NEXT_TASK ,

MEXT_TASK ,X STD

If to sleep on nexl

X LDD PREV_TASK ,

pause)

X LDX

OP ' LDX PREV_TASK
PREV_TASK ,X STD
RTS

,X LDD NEXT_TASK ,X LDX

CODE sleep (— ;puts self tc

ASSEMBLER
(sleep) * JSR
>PAOSE> " JSR
NEXT " JMP

END-CODE

sleep)

CODE WAKE (task_blk —)

ASSEMBLER
(HAKE) " JSR
NEXT " JMP

END-CODE

CODE SLEEP (task_bllc —)

ASSEMBLER
(SLEEP) " JSR
NEXT * JMP

END-CODE

(Test cases)

VARIABLE TIMER1
TIMER1 i

CREATE TIMER2 C,

TIMER2 CI

: TEST1 (—)

BEGIN PAOSE 1 TIMER1 + 1 AG IAH ;

CODE TEST2 (—)

ASSEMBLER
TIMER2 " INC
BEGIN

>PAUSE> " JSR
TIMER2 " INC

AGAIN
END-CODE

(Create Taskl with 20 data stack bytes running
' TEST1 CFA 20 : : TASK1 ;

;

(Hake taskl)

TASK1 HAKE

TEST1
)

(Create Task2 with 20 data stack bytes running
' TEST2 CFA 20 :: TASK2 ;;

(Hake task2)

TASK2 HAKE

TEST2)

(To see this tasking, type PAUSE, then watch the timers increment)

(PAOSE TIMER1 « . TIMER2 C« .)

tasker we need a mechanism to first define a task and allot the

required memory, wake a task, put a task to sleep, and we need

the word to switch context to the next task in the list.

There are two ways that I will demonstrate multitasking. The

first and simplest utilizes a regular timed interrupt to switch con-

text. The second tasking technique we'll call "Cooperative Task-

ing". In cooperative tasking a word is defined which when exe-

cuted gives the CPU to the next task in the list of tasks. Coopera-

tive tasking is the most demanding on the system engineers talents.

The programmer carefully crafts the context switching word (usu-

ally called PAUSE) into the words of the system. The multitasking

occurs at a non-interrupt level.

I prefer Cooperative tasking because by it the programmer /

architect can craft the priority of tasks into his/her system. I also

see the non-preemptive nature of cooperative tasking as beneficial

because we don't waste valuable interrupt resources on tasking.

In Figure two we see some routines necessary for memory allo-

cation and some hardware definitions. The assembly code can be

compiled in by hand. (The reader may also purchase the assembler

used in this article from the author.) Figure three is the actual

code for the timed interval tasker. Figure four is the actual code

for the cooperative tasker.

In order to download the multitasker kernel, we must first

build some "tool" words. These words are described in the multi-

tasking startup module (Figure two). The multitasking module

contains the initial Max-Forth environment setup, memory allot-

ment words, and interrupt revectoring words. The environment

used assumes external RAM from 0100 hex to 7FFF hex. I use a

32Kx8 static ram in socket U2 of the New-Micros NMIT/X series

boards.

The very first environment initialization performed is moving

the Terminal Input Buffer (TIB) to external RAM and setting the

TIB size to 80 characters. Next the dictionary pointer (DP) is set

to point to address 4000 hex. This can be altered for your hard-

ware configuration. Next the EEPROM write timing bug is fixed.

There was an indirection problem associated with the variable

used to time writing of EEPROM in Max-Forth V3.3. Space for

internal and external ram allotment can be adjusted by setting

$RAM-Start, $RAM-Limit, RAM-Start and RAM-Limit to ac-

commodate your hardware configuration. VECTOR is a primitive

version of a word that I use. This version will not write EEPROM
properly while interrupts are enabled.

The comments in the code explain the code. Have fun, and

happy Forthing!

You can purchase the assembler from me for $50 at the ad-

dress given in this article. Please specify PC or Macintosh. •

User Disk

The code from Multitasking in Forth, Animation with

Turbo Q Mysteries ofPC Floppy Disks, and Real Comput-

ing, is available on a 5.25" 360K or 3.5" 720K PC format

disk for $10 postpaid in the U.S.

Max-Forth is a trademark ofNew Micros Inc.

Macintosh is a trademark of Apple Computers.

Matthew Mercaldo

41 South Park Street

Oconomowoc, Wl 53066

Editor's Note: The code listings were prepared on a MAC and

when I placed them with the '286, PageMaker regurgitated type all

over the page. I reformatted the listings, and had to squeeze the

width to fit on the page. Anyformatting errors are my responsibility,

and not the author's

The Computer Journal / #44 15

Mysteries of PC Floppy Disks Revealed

by Richard Rodman

Finally, a nationwide magazine dares to

defy the conspiracy and reveals the shock-

ing story behind PC floppy disks! Don't

rush ahead to the earth-shattering

conclusion— all of your questions will be

answered in turn. First, some history and

basic theory.

FM, MFM and GCR
Over ten years ago, there were no

single-chip floppy disk controllers. Floppy

disk controllers were big, complex circuit

boards. Most systems used hard sectoring

—the sectors were separated by holes

punched in the disk.

However, IBM realized that soft

sectoring— separating sectors by software-

generated data patterns on the disk—was

a more powerful technique. In the late

seventies, Western Digital developed the

first single-chip floppy disk controller, the

WD- 1771. This device is probably just as

responsible for the personal computer

boom as the Intel 8080.

The FD-1771 wrote data in what was

called FM, "Frequency Modulation." This

is a recording technique in which each data

bit is recorded with a clock pulse, followed

by a data pulse or the absence thereof.

Today, this technique is known as "single

density."

FM was wasteful, because two bits of

magnetic storage were being used to hold

one bit of data. MFM, "Modified Fre-

quency Modulation," was developed to

correct this waste. By cleverly writing a

pulse for each bit dependent on what the

last bit was, they doubled the actual data

rate. Today, this technique is known as

"double density."

In the meantime, it appears that a ga-

rage computer designer named Wozniak

either didn't know about the FD-1771 or

couldn't afford one, so he put together a

little circuit wherein a single clock bit suf-

ficed for a number of data bits, and used

the CPU to generate this pattern in soft-

ware. This technique is called GCR, for

"Group Coded Recording." It achieves a

density somewhat higher than FM, but

lower than MFM.

Because GCR differs at the bit level, it

is fundamentally incompatible with both

FM and MFM, and this incompatibility

has become the tyrannical hobgoblin of

Apple Computer. It survives to this day in

the form of a chip called the IWM used in

the Macintosh. This is why no Apple ma-

chine can read a disk from any other com-

puter, nor can any other computer read a

disk from an Apple.

An incompatible form of GCR is also

used by Commodore computers.

The Boot Sector

In the old days of CP/M, there was no

standard format for 5 inch floppies. A
BIOS writer generally made an educated

guess based on how many bytes were in a

sector.

Many mechanical systems have been

proposed and implemented. For example,

8 inch floppies have an offset index hole if

they were double-sided. More recently,

some 3.5 inch drives look for a hole on the

opposite side of the disk to see if the me-

dia is high-density-capable. (Actually, I

think very few drives do that.)

But most PCs identify the format of a

diskette by looking in the first sector of the

disk. There, they find a data structure

called the Boot Parameter Block (BPB).

This data structure contains parameters

which are used in the operating system,

such as how many sectors there are per

track, how many sectors per cluster, and so

on.

Few people know it, but the Atari ST is

really running a 68000 clone of MS-DOS.
While it will read the 720K MS-DOS for-

mat without modification, MS-DOS will

only read drives with BPBs that it recog-

nizes (and not Atari's). Programs are

available for the ST which will format disks

in PC-compatible formats. (Only one pa-

rameter is incorrect— see Table 1).

Table 1 shows the BPB values of the

most common MS-DOS formats. The

SSDD 8 sector, DOS 1.0 format (/1/8) is

not shown because a BPB is not written in

that format. BPBs were not really added

until DOS 3.0.

Listing 1 is a simple program which dis-

plays the BPB of any drive. Have fun!

There is also a partition table in the

boot sector of hard disks, but it is not used

on floppies.

The 1.2 Megabyte 5" Disk

The first "high density" drive was the

IBM 1.2MB 5" floppy. This drive arose

out of a requirement to make a five-inch

floppy that would closely emulate an eight-

Table 1 - BPB's of Common Formats

Formats -

360K 1.2M 720K 1.44M 180K 360K 720K
5- 5" 3.5" 3.5" 5" 3.5- 3.5"

IBM IBM IBM IBM PCjr At. ST At. ST

Bytes /sector 512 512 512 512 512 512 512

Sectors/cluster 2 1 2 1 1 2 2

Resvd. sectors 1 1 1 1 1 1 1

Copies of FAT 2 2 2 2 2 2 2

Root dir. entries 112 224 112 224 64 112 112

Sectors/disk 720 2400 1440 2880 360 720 1440

Format ID FD F9 F9 F0 FC F8 F9

Sectors/FAT 2 7 3 9 2 5 5

Sectors/track 9 15 9 18 9 9 9

Sides 2 2 2 2 1 1 2

Special res. sec.

Note that the format ID in the BPB may not necessarily agree with the format

ID found in the first byte of the first FAT

16 The Computer Journal / #44

inch floppy. You see, five-inch floppies

rotate at 300 RPM and write data in

MFM at 250K bits/second, whereas

eight-inch floppies rotate at 360 RPM
and write data in MFM at 500K bits/sec-

ond. Another difference was that five-

inch drives have 40 tracks, whereas eight-

inch drives have 77 tracks.

Increasing the number of tracks was

simple, requiring only a more precise

stepper motor. In fact, 80 track (96

tracks per inch) five-inch floppy drives

were available before the IBM PC came

out, and were a popular upgrade for the

TRS-80. Before the IBM PC, the most

popular five-inch drives were 40-track

single-sided, single or double density, and

80-track double-sided double-density,

which was often called "quad density."

While the first IBM PCs came out

with the common 40-track single-sided

double-density drive, storing 160K bytes,

they soon standardized on a 40-track

double-sided double-density drive stor-

ing 360K bytes, writing 9 sectors of 512

bytes on each track.

Incidentally, these 8 or 9 sectors were

scoffed at by other computer system

manufacturers as lazy and wasteful. The

Kaypro II, for example, stored 10 sectors

of 512 bytes on each track; the Osborne

stored 5 sectors of 1024 bytes on each

track.

The drive makers continued working

on their project, however, which was pre-

sumably geared toward converting

equipment manufacturers who per-

versely continued to use eight-inch

drives. Eight-inch drives were still faster

— they had a higher data rate and faster

track stepping. Still, the drive manufac-

turers failed to anticipate how rapidly the

eight-inch floppy market would collapse.

By the time they had succeeded in mak-

ing the eight-inch floppy drive emulator,

there was little point in selling it as such.

IBM picked it up, however, and it be-

came the 1.2 MB floppy for the PC-AT.

So, the secret of the 1.2 MB drive is

simply this: It is an 80-track, double-

sided drive, that, when pin 2 is pulled

low, increases its rotational speed to 360

RPM. At the same time, the NEC 765

floppy controller doubles its data rate, to

500K bits/second, and writes 15 sectors

of 5 12 bytes per sector.

In some systems with 1.2MB drives,

rather than both change the speed and

double the data rate, the data rate is

changed to an intermediate value of

300K bits/sec.

Listing 1 - Program to read BPB

/* Read drive BPB. Datalight Optimum C.

IMPORTANT! COMPILE WITH -a TO DISABLE STRUCTURE ALIGNMENT GARBAGE 1

tinclude "dos.h"
iinclude "stdio.h''

idefine BYTE unsigned char
idefine WORD unsigned int

struct bpb {

BYTE jump[3];

BYTE system_id[8]; /* e.g. IBM 2.1 */

WORD bytes_per_sector;

BYTE sectors_per_cluster;

WORD reserved sectors;

BYTE copies of_fat;

WORD root dir_entries;

WORD Bectors_on_disk; /* clusters? */

BYTE £ormat_id;

WORD sectors_per_fat;
WORD sectors_per track;

WORD sides;

WORD special reserved sectors;

};

BYTE bufferf 512];

main() {

int i, n;

struct bpb *p;

for(;;) <

puts("enter drive (0=A, 1=B, 2=C, etc.)(-l to quit):'');

scant (''%d", in);

if(n <) break;

n = dos_abs_disk_read(n, 1, 0, &buffer[]);

printf(''result of read was %d\n'' f n);

/* cumbersome - assign p to address of buffer base */

p = (struct bpb *
) &buffer[];

/* C is cumbersome here too... */

printf ("system id: %c%c%c%c%c%c%c%c\n' '

,

p -> system_id[], p -> system_id[1] #

p -> system_id[2], p -> system_id[3],

p -> system_id [4] , p -> system_id [5]

,

p -> system_id [6] , P -> system_id [7])

;

printf(' ' bytes per sector: %u\n'', p -> bytes_per sector);

printf (
' 'sectors per cluster: »u\n'

'

p -> sectors_per cluster
)

;

printf(' ' reserved sectors: %u\n'

'

p -> reserved sectors)

;

printf (
' ' copies of fat: %u\n" p -> copies_of_fat

) ;

printf (
' ' root dir entries: %u\n'

'

p -> root dir entries)

;

printf (
' ' sectors on disk: %u\n" p -> sectors on disk

)

;

printf (
' ' format id: %02x\n '

, p -> format id)

;

printf (
' ' sectors per fat: %u\n'' p -> sectors_per_fat

)

;

printf (
' ' sectors per track: %u\n'

'

p -> sectors_per track)

;

printf (
' ' sides: %u\n'

'

p -> sides
)

;

printf (
'

}

' special resvd sees: %u\n'

'

p -> special reserved sectors)

;

>

/* end of readbpb.c */

The 1.44 Megabyte 3.5" Disk

The 3.5 inch drives are pretty much small

copies of the 5 inch drives. This is the result

of a standardization effort in the early 80s

that resulted in an ANSI standard for 3.5

inch media and drives.

When IBM decided to change to the

3.5 inch drives, they realized they couldn't

just give people the same 360K and

1.2MB sizes. Instead, they settled on two

The Computer Journal / #44 17

compatible drives— an 80-track double-

sided double-density mode (the "quad

density" mode of yore), and a similar drive

with a "high density" mode. The lower-

density format uses nine 512-byte sectors

per track, giving 720K bytes on a disk. This

format is exactly the same as that used on

5 inch drives by some other manufactur-

ers, such as Sanyo.

The 3.5 inch drives don't have an eight-

inch drive emulation mode, however, so,

unlike the 1.2MB drive, the 1.44MB drive

doesn't change speed. The data rate is

doubled as before, so that the 2MHz
(500K bits/sec) data rate is used. Eighteen

512-byte sectors are used per track, in-

stead of nine.

Having this information, you can ap-

preciate why you shouldn't use normal-

density media in high-density drives. High-

density media isn't just normal-density

media that tested out better. The 1.2MB

media has to be able to reliably handle 20

percent more flux changes per inch— and

the 1.44MB media has to reliably handle

100 percent more. While low-density me-

dia might seem to "work okay", the bigger

magnetic particles on the normal-density

material will have both weak magnetiza-

tion and strange data pattern sensitivities.

Speaking of data pattern sensitivities,

the worst-case value for MFM data stor-

age is 6DB hex, because this pattern writes

the fewest pulses on the disk and requires

the most careful clock recreation. When-

ever you format your disks, if you have a

choice, use 6DB or a variation thereof,

such as the two-byte value, 6D B6. Never

be content with simply writing E5.

The relevant parameter seems to be

something called "coercivity." Regular

360K floppies have a coercivity of 320 oer-

steds, and 1.2MB floppies have 640. Of

course, you already know not to try to put

1.2MB on a low-density floppy. On the

3.5s, the 720K disks are 600 oersteds, and

the 1.44MB is 640. 1 was surprised to see

that they're so close -but, again, don't get

the idea that the 720K disks will be "pass-

able" at 1.44MB.

I've been dismayed to find that even

name-brand 1.44MB diskettes have some

bad sectors. This tends to make
DISKCOPY operations iffy. However,

some very inexpensive generics I pur-

chased recently for under a dollar have

formatted perfectly every time. Look for

the ones that show you the oersteds right

in the ad.

It should be possible to use ten 1024-

byte sectors in high-density mode. This

would give a drive capacity of 1.6 MB.

Table 2 - PC Floppy Interface Signals

Pin

2

Floppy Drive PC Controller

High density (1.2M drives) High density (if used)

4 not used not used

6 DS4 not used

8 Index Index

10 DS1 Motor on A:

12 DS2 DS2 (Drive select B:)

14 DS3 DS1 (Drive select A:)

16 Motor On Motor on B

:

18 Direction Direction

20 Step Step

22 Write data Write data

24 Write gate Write gate

26 Track Track

28 Write protect Write protect

30 Read data Read data
32 Side 1 select Side 1 select

34 Disk change (3.5" drives) Disk change (if used)

Notes:

1. All odd pins are grounded.

2. The cable twists pins 10 to 16 between the connectors for the B (straight

through

)

and A drive.

3. All floppy drives are jumpered for DS2 •

4. Pin 2, on a 1.2M 5" floppy, changes rotational speed from 300 to 360 RPM.

It has no effect on other drives. Some controllers don't use this

technique to change density (see text) •

5. Pin 34, on some 3.5" drives, goes low when no disk is present in the

drive

.

To my knowledge, this signal has never been used by anyone . A

more universal technique is looking for index pulBes from the rotating

diskette to see if it iB present.

Somewhere in the bowels of MS-DOS,
however, there is a 512-byte sector size

limitation, so don't bother trying it.

Why do PC Floppy Cables Have That

Weird Twist?

Floppy drives were originally designed

to be connected in parallel on a long, flat

cable. The signals were driven by high-cur-

rent, open-collector drivers. These drivers

allowed for cable lengths of twenty feet or

more; the last drive on the cable had a ter-

minator resistor pack (all other drives had

to have it removed). Four drive select sig-

nals were implemented to allow up to four

drives on a cable, and each drive was

jumpered to be selected by one of DS1,

DS2, DS3 or DS4. Five-inch drives also

had a Motor on signal.

When IBM designed their PC, they re-

alized that the conventional way of dealing

with floppy drives made cable construction

easy, but made it hard to configure mul-

tiple drives: The first drive had to have

DS1 set, but the second had to have DS2,

and whichever was on the end of the cable

had to have a terminator pack, and the

other drive had to not have one. If any-

thing was wrong, you've got trashed disks,

lost data and very unhappy customers. A

bad scene.

The first thing they wanted to do was to

come up with a way to jumper all the

drives the same. This they accomplished

by the twist in the cable: pins 10 to 16 are

twisted between the two drive connectors.

Then, all drives are jumpered to DS2
(drive two). The controller now has two

drive select lines, one being DS2, pin 12,

which selects drive B:, and one being DS3,

pin 14, which selects drive A:. Also, there

are now two Motor on lines instead of one,

one being the original Motor on, pin 16,

which now turns on drive B:'s motor, and

the other one being the original DS1, pin

10. An unfortunate consequence of this

kludge—which it is, to be sure— is that

only two drives can be controlled instead

of four. (See table 2).

That being done, after a couple of

years, the realization dawned that floppy

cables were short, only a couple of feet,

and the high drive requirement was unnec-

essary. This allowed for lower-current (LS

TTL) drivers, and higher resistance pull-

ups which could be installed on both flop-

pies. Today, there is no need to consider

drive jumpering or terminating resistors at

(Continued on page 20)

18 The Computer Journal / #44

DosDisk

The MS-DOS Disk Format Emulator

by Daniel J. Mareck

For the second time in two years, my good old work horse has

been pulled from the brink. This time the discovery of DosDisk

from Plu*Perfect has given my good oP S100 workhorse a new

lease on life. The last time it almost went to pasture was before I

discovered ZCPR, but if I get carried away on that you'll never

find out about DosDisk.

If you're faced with the dilemma of having all DOS-based PCs

in your workplace, a CP/M system at home, and the need to make
them communicate, then DosDisk is for you. It is a resident sys-

tem extension (RSX) that allows you to access a standard 360k

DOS-format floppy as if it were a CP/M disk native to your ma-

chine! This means using your favorite directory program, copy

program, and even wordprocessor directly on the DOS-formatted

file. The other 'exchange' programs I'm aware of require you to

copy the file onto a native disk before operating on it.

The only one real restriction to DosDisk is that the disk must

have previously been formatted in some other way. DosDisk can-

not format a disk. As a side note, so I do not leave any doubt,

DosDisk is NOT an emulator program. It will not allow you to

'run' DOS programs on your CP/M system.

Included with DosDisk is a utility that allows you to create and

delete subdirectories and to select the directory to work with. This

provides direct access to any subdirectory on the disk as well as the

root directory. Several other utilities are provided that can take

advantage of the date and time stamping of the DOS files. These

include an enhanced directory program and a filesweep program.

It should be noted, however, that for these programs to make
effective use of the time stamps you must be running

Plu*Perfect's DateStamper or one of the new ZDOSes.

The documentation that comes with DosDisk explains how to

use it and each of the utilities provided with it. I found this docu-

mentation to be (for the most part) concise, clear, and complete.

The 'kit' installation section was slightly confusing until I really

started into the installation; then it became clear. Since that kind

of thing seems to happen to me a lot, I don't think anything of it.

My only real gripe is that the manual doesn't fit into an 8V2X 11

binder; it's made for an 'IBM' binder.

DosDisk is available preconfigured for several systems, includ-

Dan Mareck is a computer systems engineer working as a con-

sultant. He has over 15 years experience in real-time hardware/soft-

ware systems design and is currently involved in software develop-

mentfor RISCprocessors embedded in radarystems.

Dan is involved in many activities including the Lancaster Micro

Computer User's Group (a FOG AMO) of which he is president.

His spare time is spent tinkering with his home-brewed SI00 system

(runningZCPR ofcourse!).

To get in touch with Dan electronically leave a message on GE-

NIE for D.MARECK1, by voice at (717) 235 6568 and by Pony

Express at 1 Westwoods Rd. New Freedom, PA 17349.

ing Kaypros, Morrows, Xeroxes, the SB 180, and others. (Contact

Z Systems Associates or Plu*Perfect Systems for details.) It is

capable of running under CP/M 2.2, CP/M 3.0, and the Z-Systems.

For those of us not fortunate enough to have one of the preconfig-

ured target machines, Plu*Perfect also provides a 'kit' version. In

the next section of this review, I will discuss in more detail what

you have to do to make this 'kit' version run on your computer.

Building The DosDisk Kit

The DosDisk 'kit' is assembled (no pun intended) by writing

several custom subroutines into a 'standard' overlay. The routines

that need to be written are: Validate, Install, Uninstall, and (op-

tionally) CRT status line routines. The optional CRT routines

place and remove indications on the CRTs status line (if one ex-

ists) noting whether DosDisk is installed. A sample overlay is pro-

vided that is well written and documented. This sample even in-

cludes test stubs to allow each of the overlay routines to be tested

before merging the overlay into DosDisk.

For your system to work with DosDisk it must support the

following physical characteristics:

a DSDD 48 tpi 40 track drive

9 512 byte physical sectors, no skew

and the BIOS must support the following logical characteris-

tics:

Non-Cylinder Mode
2 tracks/Cylinder

Even tracks on side 0, odd on side 1

Non-Inverted Data

Allocation Vector of at least 48 Bytes

Check Directory Vector of at least 28 Bytes

Your life will be made much easier if your BIOS also supports

the overloading of disk parameter information for foreign formats.

A brief note on non-cylinder disk access. Technically speaking,

a cylinder is considered to be both sides of a disk at any given head

position. When accessing a disk as a cylinder, the head is stepped

to a given track (e.g., track 3), then the data is read first from side

0, then from side 1 based upon sector number. When accessing

the disk using non-cylinder mode, each side of the disk is treated

independently. I know of two methods for doing this (and there

are probably more).

The first, and most common, is the one required by DosDisk.

Using this technique a 40 track disk is accessed as if it had 80

tracks. The low order bit of the track number is used as the side

select thereby placing all the odd tracks on side 1 and the even

tracks on side 0. Kaypros and the SB 180 are two machines that

immediately come to mind as using this format.

The second (used by the Superbrain) also treats the disk as if it

had 80 tracks. However, with this format all of side is accessed

first, as tracks 0-39. Then side 1 is accessed as tracks 40-79. As
Murphy would have it, that was the way my system worked. It was

The Computer Journal / #44 19

BIOS butchering time. Because in the many years that I've had
this system I've never needed the Superbrain format, I elected to

switch the non-cylinder mode of my BIOS to the first method that

I described above. Surprisingly, that change was really painless! So
with that capability added to my BIOS, it was on to the DosDisk
Overlay.

I like to start simply, so the first routine written was the valida-

tion routine. This routine just looks at the version number that

I've coded into my BIOS right after the jump table. If it finds the

incorrect version it returns with the error flag set. (I need to imple-

ment this check on some of the other programs that have 'hooks'

into the BIOS, such as my Format Program.)

Next was the Install routine. My BIOS made this very easy to

code. All I needed to do was copy the DosDisk DPB (disk pa-

rameter block) into a 'staging area' in my BIOS, set the 'foreign

format' flag, then select the logical drive that DosDisk is to be
installed on. This select causes my BIOS to move the 'foreign

format' information from the 'staging area' into the DPB for that

drive. If you don't have this capability, you will need to do a 'select'

to get the address of your disk parameter block, copy the existing

DPB into a data area provided by DosDisk, then move the

DosDisk DPB into place. (Be sure you re-select the disk that was
originally selected or you may have some problems.)

Finally, the Uninstall for my system was the easiest of all to

create. I simply had to clear a 'Disk Logged' flag for the DosDisk
drive. My BIOS then restores the 'native' DPB on the next select

for that drive. On other systems it would be necessary to copy the

'native' DPB from DosDisk's internal data area back to the DPB
buffer for that drive.

Since my terminal doesn't support a 25th status line, I didn't

bother to implement either of the terminal routines.

If you use the sample overlay, you will find that it includes

several useful routines conditionally assembled to aid in debug-
ging. But, since my implementation was so simple, I elected to

merge the overlay into the DosDisk COM file, load it with Z8E
(my favorite debugger), then use Z8E to simulate calls to each of

the overlay routines (before allowing DosDisk to run).

In summary, DosDisk has been an incredibly useful utility, pay-

ing for itself many times over in convenience. If you are fortunate

enough to be able to get a preinstalled version, you're home free.

But, don't let fear of installation hold you back. If you have had
assembly language programming experience and know your BIOS,
a couple hours of work will have DosDisk up and running. If you
happen to be using a Computime S100 system, contact me and I'll

provide my changes. •

Mysteries of PC Floppy Disks

(Continued from page 18)

all . . . at least, on floppy drives.

An Aside

Those of you who have Atari STs with single-sided drives might

be interested in this single-sentence upgrade to double-sided

drives: 1. Open the box; 2. Disconnect and remove the old drive; 3.

Jumper the new drive for DS1 (not DS2 as the clones do it); 4.

Connect the drive up; 5. Close the box (you might want to cut

some holes in it if the light is in a different place, etc.).

Floppies of the Near Future

There are some new developments in store in the floppy disk

arena. Unlike hard disks, the floppy disk market seems to innovate

at a glacial pace. This is because of the need for compatibility and

low price.

Zenith's MinisPort laptop uses 2 inch floppies. These drives use

a 720K byte format exactly like the 720K 3.5 inch format.

Several manufacturers seem to be working on compatible 3.8

megabyte 3.5 inch drives. It appears that these drives use a higher

track density, with more accurate stepping, rather than RLL or

any other more exotic technology. Thus, they are compatible with

older formats.

Other companies are playing with vertical recording. Another

company, Insite Peripherals, increases track density by burning

concentric circles on the media to delineate tracks and thereby get

more on the disk. Their drive stores 20 megabytes on an expensive

floppy.

The most promising developments for further in the future are

the RAM cards. These devices are finding increasing use in vari-

ous portable devices. Problems at this point are high cost, the lack

of a standard data encoding format, and finding connectors that

don't wear out and work well under a variety of humidity and

temperature conditions.

Of course, there are WORM drives, laser cards, removable

hard disks, and writable CD-ROMs. But in each case, either the

drive or the media, or both, is too expensive for mainstream use.

Low-cost floppy drives were greatly responsible for the PC

revolution, and removable, exchangeable, and distributable media

will always be required for the future. So, it looks like floppies are

here to stay, be they whatever size.

Oh, and the earth-shattering conclusion? Floppy disks were ac-

tually not invented by IBM, as you may have heard, but were

transported to Earth by space aliens who had been in psychic con-

tact with Elvis Presley. Actually, they were demonstrated by Gen-

eral Electric at the 1939 World's Fair. Thomas Edison described

them in 1896. Nikola Tesla had the idea first, but his models disap-

peared into the Bermuda Triangle. Amelia Earhart knew the

whole horrible story. Elvis took it to his grave. Micheal Jackson is

buying the rights. You read it right here. It's all true — except this

paragraph. •

References:

The PC Sourcebook, by Tom Hogan, Microsoft Press, 1988

Technical Reference - Personal Computer, anonymous, IBM
Corporation, 1984

Programmer's Guide to the IBM PC, by Peter Norton, Micro-

soft Press, 1985 (aka the Pink Shirt Book)

Tandy 4000 Technical Reference Manual, anonymous, Tandy

Corporation, 1987

User Disk

The code from Multitasking in Forth,

Animation with Turbo C, Mysteries of

PC Floppy Disks, and Real Computing, is

available on a 5.25" 360K or 3.5" 720K
PC format disk for $10 postpaid in the

U.S.

20 The Computer Journal / #44

Advanced CP/M
ZMATE—The Z-System Programmer's Editor

and
Lookup and Dispatch

by Brldger Mitchell

ZMATE
Exciting news at press time! Jay Sage and I are completing the

arrangements to offer a new, Z-System version of the superb

MATE editor, which Michael Aronson created more than a dec-

ade ago for use by members of his research group in the Harvard

Physics Department. They referred to it simply as Mike Aronson's

Text Editor, and the initials MATE became its name. When Phoe-

nix Software picked it up as a commercial product, they added

their 'P' trademark, and it became PMATE. It also grew into an

MS-DOS version (which is Jay Sage's DOS writing tool).

Jay and I had long wanted to bring it up to date. Our objectives

included: recognize drive-user and named-directory file refer-

ences, install automatically on a Z-System by getting screen codes

from the TCAP, offer split-screen display, enhance several com-

mands, and fix a few lingering bugs. Mike Aronson was agreeable

in principle, but, alas, the source code could not be located. Fortu-

nately, I succeeded in fully disassembling the editor. Then I con-

verted it to Z80 code and gradually added the new features. In its

new incarnation we call it ZMATE.

ZMATE is a macro-driven editor. This means that virtually

everything the editor does can be programmed, and reprogram-

med, by the user. The implications are far-reaching. First, you can

automate both simple, repetitive operations and very complex

editing tasks. The macros you create can be saved and reused.

You can assign them to specific keys or sequences of keys, or you

can invoke them as single-character commands. Second, you can

"rebind" the keyboard commands to whatever keys you prefer to

use, which makes learning ZMATE and switching to it from an-

other editor go more smoothly.

ZMATE uses a main text buffer, which supports virtual mem-
ory (the size of the file being edited is limited by disk space and not

Bridger Mitchell is a co-founder ofPlu*Perfect Systems. He's the

author of the widely used DateStamper (an automatic, portable file

time stamping system for CP/M 2.2); Backgrounder (for Kaypros);

BackGrounder ii, a windowing task-switching system for Z80 CP/M
22 systems; JetFind, a high-speed string-search utility; DosDisk, an

MS-DOS disk emulator that lets CP/M systems usepc disks without

file copying; and most recently Z3PLUS, the ZCPR version 3.4 sys-

tem for CP/MPlus computers.

Bridger can be reached at Plu*Perfect Systems, 410 23rd St.,

Santa Monica CA 90402, or at (213)-393-6105 (evenings).

by memory) plus 10 supplementary, numbered buffers. The num-

bered buffers can be used to hold chunks of text, or other files, or

macros. ZMATE's new split-screen mode lets you see, simultane-

ously, text from two different buffers or from two parts of the

same buffer. Two-window capability is extremely handy— for keep-

ing track of notes while writing, for viewing a list of equates when

coding, and for developing and testing macros.

Final arrangements are being worked out at press time, but we

expect to be able to make ZMATE available at the incredible

price of $50 (the last version ofPMATE from Phoenix was $225!).

Write to Plu*Perfect Systems or Sage Microsystems East for fur-

ther information. And watch future TCJ columns for some nifty

ZMATE macros!

Lookup and Dispatch

In last issue's Advanced CP/M we considered several methods

of efficiently passing parameters to a subroutine. This time our

topic is multi-way branches— the efficient dispatching to one of

several possible routines.

In-line Comparison.

When there are just a few branches, a series of in-line compari-

sons is the natural choice.

cp 'a'

DP z,a addr
cp 'b'

IP z,b addr

i " • •

otherwise:

This is quickly written and reads clearly when there are just a

couple of alternatives.

In a high-level language, this might be written:

case 'a' :

a_addr(
) ;

break;
case 'b'

:

b_addr() :

break;

default:

otherwise
()

;

The Z80 code can be shortened a bit if the keys are consecutive

values. Subtract the smallest key to convert the value to small

integers:

The Computer Journal / #44 21

sub 'a'

jp z , a addr
dec a

JP z,b addr

subtract smallest key

otherwise:

Key/Address Tabulation

When there are more than half a dozen branches, it

becomes worthwhile to put the cases into a table. A
straightforward, popular data structure is:

TERMINATOR equ OFI

tbl: db
dw
db
dw

a key

a address
b_key
b address

db TERMINATOR

The real benefit of using a data structure over in-line

code is the readability and maintainability of the code. If

we use a simple macro:

macro key, addr
db key

dw addr

endro

end

then the same table can be written very clearly as:

tbl: • cmd

• cmd

' a ' , a_addr

'b' ,b_addr

As the program evolves, changes are immediately ap-

parent. We add a new key and its address to the table and

provide its matching routine, or change the key used for

an existing routine to better represent it mnemonically.

In each example that follows, we will use a lookup

routine that is used in this general form:

load registers with parameters
call lookup routine

if not found, jump to error
else jump to address of matching routine

One lookup routine for this data structure is shown in

Figure 1. It steps through the table, comparing the A
register value with each tablulated key. If it matches, it

loads the next two bytes as the dispatch address. If not, it

skips past those bytes and tests the next key.

Block-compare Dispatching

The Z80 is renowned for its block-move instructions

(LDIR, LDDR). We can exploit one of the similar block-

compare instructions to make a more efficient lookup

routine.

The essential idea is to separate the keys and ad-

dresses into two, parallel tables:

keytbl: db 'a'

db 'b'

addrtbl

:

dw
dw

a_addr
b addr

We can search the keys by setting HL to point to the

keytable and BC to the number of tabulated keys. The

Figure 1 . Lookup Routine for Key/Address Table

Enter

a •> index
hi -> table, terminated by OFFh

Exit:

Z if error, else hi = dispatch address

lookup

:

Id b,(hl) ; if FF terminator
inc b

ret z ; . .exit Z

cpi ; check key for match

jr z, match
inc hi ; skip over address word
inc hi

jr lookup
match: or Offh ; set NZ

Id a, (hi) ; get address
inc hi
Id h,(hl)

Id l,a

ret

Figure 2 — Lookup using Block-Compare Instruction

Entez : a = index
hi -> end of key table

be = # entries
de -> start of address table for keys

• Exit- Z if match, hi = dispatch address

lookup cpdr compare and repeat

ret nz . .not found

ex de,hl point at address table

add hi, be index into it

add hi, be

Id a, (hi) get the address

inc hi
Id h,(hl)

Id l,a

*

ret

CPIR instruction will then scan the full table, returning with the Z flag set if

a match is encountered, and the BC with the number of keys not yet

checked.

Figure 2 is a lookup routine that uses these techniques. Actually, it's

more compact to start at the end of the table and use the CPDR instruc-

tion. That way, the final BC value can be used to index into the address

table.

It seems, though, that in splitting the keys and addresses we've been

forced to use an inelegant and error-prone data structure. But we can

design a simple macro to get around this:

cmd macro key, addr

cseg
db key

dseg
dw addr

cseg
endm

My personal convention is to label macros with a leading "dot" (thus,

".cmd"). This helps to set them apart from other names in a stream of

source statements. In this macro, we make use of two different relocation

bases -the regular code (CSEG) base for the key table, and the data

(DSEG) base for the address table. We can then again write the table as

tbl: cmd

.cmd

'
a

'
, a addr

'b' ,b addr

In some cases, though, we may want to keep the two tables together in

the same relocation base. With rather more effort, we can develop a pair of

22 The Computer Journal / #44

Figure 3 — Key/Address Table Macros for Code Segment

usage

i

.precmd n,keytbl,addrtbl

.cmd 'A',a_addr

. cmd ' B ' , b_addr

. cmd %CNTL_A, cntl_a_addr

.poBtcmd

number of keys, labels

first key, its address

etc.

use '%label' for non-printing key

check for correct length

; Define the origins for the key and address tables.

; Define the (global) labels for those tables.

.PRECMD macro n,keylabel,addrlabel

;; note — these are all global labels

???keyorg defl $

???addrorg defl S+n
???keycnt defl n

i

keylabel equ $

keylabel&end equ $+n-l

addrlabel equ $+n

endm

; Create an entry in both tables.

i

.CMD macro key, addr

;; test for missing parameters, force an error if so

if nul key
.error MISSING PARAMETER!

exitm
endif
if nul addr

.error MISSING PARAMETER!

exitm
endif

???keycnt defl ???keycnt-l
org ???keyorg

db key
???keyorg defl

org ???addrorg
dw addr
???addrorg defl

endm ;; .cmd

???keyorg+l

???addrorg+2

; Check for correct table length parameter

.POSTCMD macro

if ???keycnt

.error BAD TABLE COUNT

endif
endm

Figure 4 — Lookup With Implicit Keys

a 3 index
b min. index, c = max. index+1

hi -> table of addresses

Exit:

lookup:

lookupl

CY if error

else hi = dispatch address

cp b ;

ret c ;

cp c ;

ccf
ret c ;

sub b
add a, a ;

add a,l

jr nc, lookupl

inc h

: Id a, (hi)

inc hi

Id h,(hl)

Id l,a

or a ;

ret

if index < min. value
. .error

or if > max. value

error

; make relative index
double rel. index

clear cy

macros to do the same thing entirely in the code

relocation base. They are shown in Figure 3. The

".precmd" macro is invoked first, with the number

of cases (N) that will be used in the table, and the

labels for the key and address tables. This is fol-

lowed by N ".cmd" macros, as above. Finally, the

".postcmd" macro is invoked, to check that there

were actually N table entries declared.

Writing assembler macros is always a tricky

business. It took me several iterations to get this

one working! So it's good practice to document its

use, and to build in error-checking.

One disadvantage of this macro pair is that N,

the number of table entries, must be a hand-cal-

culated constant— it must be a known value when

the .precmd macro is invoked. You cant define N
as the number of .cmd statements, because that

value isn't available to the assembler until it gets

to the end of the table on its first assembly pass.

The best I could come up with is the third

".postcmd" macro to check that the precalculated

value actually agrees with the number of macro

invocations.

The contortions required to write this macro

pair illustrate the need for a more powerful macro

language. What we would like to have is a way to

postpone using the address parameter of all invo-

cations of the .cmd macro until all of the parame-

ters in the key table have been constructed. The

old TDL assembler has such features. Using it,

one can declare temporary variables. In this appli-

cation we would use them to hold the address val-

ues from successive .cmd macros, and then in a

different ".postcmd" macro define all of the ad-

dress words.

Exhaustive Case Table

When almost all of the keys in a range of val-

ues are to be used, the keys themselves can be

omitted. In this case the addresses in the address

table serve as implicit keys. No searching is re-

quired; the correct table location is calculated di-

rectly from the key value. Suppose, for example,

we have keys 'A' through 'P'.

The address table is then:

addrtbl

:

dw A addr

dw B_addr

dw P addr

Note that the addresses must now be in "al-

phabetical" order, with no gaps. If there are just a

couple of keys in the sequence that aren't in use,

you can use a the address of a dummy (or error)

routine for them.

A lookup routine for the exhaustive case table

is shown in Figure 4.

Discussion

A lookup function can be reused for several

different tables throughout a program. It thus

makes a good method for a menu, or command-

driven application in which there is some type of

The Computer Journal / #44 23

hierarchy. It also finds heavy use in major tools— assemblers, link- code key; the address of a further data structure indexed by a key

ers, database managers, and so forth. byte; and for other key/pointer uses.

Whatever method is used, it is essential to have a range check Still another application of lookup routines is translation from

and an error routine to handle illegal key values. one key to its replacement value. Here, the second table would be

Despite the uniformity of these examples, the addresses in the a table of single bytes, rather than words. Straightforward modifi-

lookup routines needn't be subroutine entries. The same routine cations to the routines used here can serve that purpose. •

can be used to locate a message string corresponding to a message

Plu*Perfect Systems == World-Class Software

BackGrounder ii $75
Task-switching ZCPR34. Run 2 programs, cut/paste screen data. Use calculator, notepad, screendump, directory

in background. CP/M 2.2 only. Upgrade licensed version for $20.

Z-System $69.95

The renowned Z-System command processor (ZCPR v 3.4) and companion utilities. Dynamically change memory

use. Installs automatically

Order Z3PLUS for CP/M Plus, or NZ-COM for CP/M 2.2.

ZMATE $50
New Z-System version of renowned PMATE macro editor with split-screen mode for two-window viewing of one or

more files. Extremely powerful and versatile macro capability lets you automate repetitive or complex editing

tasks, making it the ultimate programmer's editor. Macros can be saved for reuse and also assigned to keys.

Editing keys can be reconfigured for personal style. Supports drive/user and named-directory file references.

Auto-installs on Z systems. Z-80 only. Supplied with user manual and sample macro files.

PluPerfect Writer $35
Powerful text and program editor with EMACS-style features. Edit files up to 200K. Use up to 8 files at one time,

with split-screen view. Short, text-oriented commands for fast touch-typing: move and delete by character, word,

sentence, paragraph, plus rapid insert/delete/copy and search. Built-in file directory, disk change, space on disk.

New release of our original upgrade to Perfect Writer 1 .20, now for all Z80 computers. On-disk documentation

only.

ZSDOS $75, for ZRDOS users just $60
State-of-the-art operating system. Built-in file DateStamping. Fast hard-disk warmboots. Menu-guided installation.

Enhanced time and date utilities. CP/M 2.2 only.

DosDisk $30 -$45

Use MS-DOS disks without copying files. Subdirectories too. Kaypro w/TurboRom, Kaypro w/KayPLUS, MD3,

MD11, Xerox 820-I w/Plus 2, ONI, C128 w/1571 -- S30. SB180 w/XBIOS - S35. Kit- $45. Kit requires assembly

language expertise and BIOS source code.

MULTICPY $45
Fast format and copy 90+ 5.25" disk formats. Use disks in foreign formats. Includes DosDisk. Requires Kaypro

w/TurboRom.

JetFind $50
Fastest possible text search, even in LBR, squeezed, crunched files. Also output to file or printer. Regular

expressions.

To order: Specify product, operating system, computer, 5 Plu'Perfect Systems

1/4" disk format. Enclose check, adding $3 shipping ($5 41 23rd St.

foreign) + 6.5% tax in CA. Enclose invoice if upgrading Santa Monica, CA 90402

BGii or ZRDOS. (213)-393-6105 (eves.)

BackGrounder ii ©, DosDisk ©, Z3PLUS ©, PluPerfect Writer ©, JetFind © Copyright 1986-88 by Bridger Mitchell.

24 The Computer Journal / #44

Real Computing
The National Semiconductor NS320XX

by Richard Rodman

Benchmarks

There are only two kinds of bench-

marks: The ones you do yourself—and

lies.

I tested the 32532 Designer's Kit using

the Prendeville C compiler and the In-

ternet assembler by Bruce Culbertson. For

comparison, I used Microsoft C large

model running under DOS on a variety of

machines. The numbers shown in Figure 1

are in Dhrystones per second; that is,

50000 divided by seconds.

For comparison, the VAX 11/780 as

given in the Dhrystone source file is listed

at some various numbers around 1500.

Editor's Note: The DHRYSTON.C
28.6KB file with the results and C source

code is available on disk, or hardcopy for

an addressed #10 envelope with 45 cents

postage.

Now everyone knows that the

Dhrystone benchmark is as much or more

a test of compiler technology than of CPU
integer performance. This has been inter-

preted by many as a cue to "hand-opti-

mize" the compiler output or use other

exotic technology to claim astronomical

benchmark figures. The problem here is

that your programs cannot benefit from

these techniques. The only benchmarks

that are usable are those that are com-

puted using standard off-the-shelf compil-

ers.

Intel 80x86 benchmarks should also be

always done in large model. Small-model

performance is only an indicator of how

trivial programs will run.

Anyway, I expected the 32532, running

with no wait states using 35ns static

RAMs, would do better. So, I am fiddling

with the compiler to see if improvements

can be made.

A surprising result is the quick per-

formance of DOS programs in the OS/2

DOS compatibility box, for which I have

no explanation. Incidentally, some people

have suspected me of being a closet OS/2

fan. That is not true. I am a non-closet OS/

2 fan.

Fast Packet

Low-overhead network protocols are

beginning to move through the standards

bodies. The big talk in the packet-switch

world is a new protocol called Frame Re-

lay, which basically is a modified version of

level 2 of X.25. Rather than a step-wise

acceptance of responsibility for data integ-

rity at each node, error checking is only

performed at the end nodes, and in the

event of error, retransmission is on an

end-to-end basis.

The thinking behind this new mecha-

nism is that the all-digital fiber networks of

today are virtually error-free, and there

isn't as much need for so much protocol.

By moving error checking to the circuit

ends, there is much less work to do in

moving the data. In fact, once the address

portion has been received, the switch can

begin transmitting the outbound packet

while the inbound packet is still being re-

ceived. This will have the effect of greatly

reducing cross-network delays.

ANSI, CCITT and the other standards

bodies generally take it upon themselves

to add as much baggage as they can to any

proposed standard. That's why you get so

little actual performance compared to

your theoretical value.

But the world seems to go through

cycles of ornamentation and simplicity, of

embellishment and austerity. The swing

today is to the smooth, the clean, the

simple, straightforward, and honest. The

challenge is to never mistake simplicity

with being simplistic, forcing simplicity

upon something which is really complex.

As Albert Einstein once said, "It should be

as simple as possible, but no simpler." To
which I add, as complex as necessary, but

no more complex. Programmers take

note.

More Bones to Pick, Axes to

Grind

Intel is currently trying to sell everyone

on a benchmark which they call

Rhealstone. This benchmark is supposed

to measure embedded-system perform-

ance, but in fact only measures interrupt

response and context-switch time. While

the NS32 chips do in fact have about the

best context-switch time in the industry, I

think it's intellectually dishonest on Intel's

part to say that embedded system per-

formance is predominantly measured by

these factors, because their register-poor

processors do well in these areas, but are

computationally deficient for the same

reason.

Then there's another company that's

actually managed to establish a "stan-

dard," actually cited by some government

RFPs, that any supplied operating system

must be totally compatible with the cur-

rent version of their proprietary operating

system (it has some Greek-sounding

name).

This kind of behavior might be defen-

sible if these "standards" had any technical

merit, but they don't. They're like GM get-

ting the government to mandate that all

32532,
80286,
80386,
80386,
80386,

25MHz,
10MHz,
16MHz,

16MHz,

16MHz,
Figure

. 7530

. 1852

Tandy 4000, OS/2 1.2 DOS box, MSC 5.1 .

It Dhrystone results.

. 1742

. 2252

The Computer Journal / #44 25

cars must use Corvair transaxles (Corvair

is a trademark of General Motors Labora-

tories).

Then, even more laughable, in a sad

sort of way, is the fact that a college stu-

dent is being prosecuted because he un-

leashed a "worm" which entered govern-

ment computers. It seems that he overesti-

mated the "security" of the network to

which his college's computers were con-

nected. Using the word "secure" in con-

nection with this "standard" operating sys-

tem is an oxymoron indeed. Remember
the old saw about "if builders built build-

ings the way that programmers wrote pro-

grams..."?

Rumor City

National will soon be making available

an AT-form-factor motherboard using the

32GX32 chip. This motherboard will cost

around $2600. For applications requiring

an MMU, the 32532 may be substituted

for the 32GX32. It's unfortunate that it

costs so much, but big semiconductor

houses just never seem to be able to pro-

duce affordable boards or systems.

The rumors have it that a whole series

of motherboards is coming. It sounds fishy

to me— after all, people have been asking

for it for years. National has announced a

new IC that has the floppy controller,

printer and serial interfaces, game control-

ler interface, and decoding logic all on one

chip.

•' Isn't it strange, though, that the parts

places that cater to experimenters seldom

carry any newer devices. Maybe they're

just overstocked with 8085s, 6820s, and

Z80-DMAs. The big parts companies still

don't have the imagination to see that the

experimenters and hobbyists who pay real

money for these parts and have the deter-

mination to make something out of them

are the CEOs of the future. Do these folks

a little favor, and they'll repay you a mil-

lion times. Do them a bad turn, and you'll

never sell them a free lunch.

In fact, if I was running National Semi-

conductor, I'd practically give the boards

away. (I hope someone at National reads

this!)

Language of the Future— Here
Today

If you look back at the magazines from

the opening years of the real PC revolu-

tion, 1976 and 1977, you'll remember that,

once Tiny Basic was readily available,

there was universal assent as to what the

language of the future would surely be.

This language was interactive, giving in-

stantaneous feedback, with unmatched

power and brevity of expression. It was the

ultimate interpreted language, compress-

ing complex operations into single charac-

ter tokens. Everyone knew it, and there

was no stopping it. It was APL.

Today, while multitudes struggle with

the thorny complexity of C, now ANSIfied

with an ever-tightening noose of stricter

and stricter syntactical rules (how about

this cast: "(void (*)(void))"?), a small,

soft-spoken minority has arrived at the

conviction that the next generation must

rise above this cacophony of petty bit-twid-

dling and move mankind into the real in-

formation age. These folks are distributing

an APL interpreter for PCs at cost, hoping

to reach the younger generation. They are

even working on a version for the lowly

Commodore 64.

They will answer the phone: "I APL -

do you?". Alas, I must admit, I do not. I

used Vanguard APL on a CP/M system

with a video board— I customized the

character generator myself— but, while I

agree that the math symbols are sure pow-

erful, I can't remember what the darn

things mean. Kids have these spongelike

brains, though, and it seems like they can

pick anything up. •

Where to call or write

BBS: 703-330-9049 (Richard Rodman)

I APL, do you?
Edward Cherlin

APL News
6611 Linville Drive

Weed CA 96094

Animation with Turbo C
(Continued from page 10)

Bringing It All Together

There is insufficient space available to

wrap this topic up here. Now that we have

most of the basics down and have done

some experimenting we are anxious to put

our new learning to use with some exciting

screen action programs, right?

Part two will continue where we are

leaving off— that is, we will start by firing

shells from the tank at several different

angles. To do this we begin with creating

and saving the shell image. We then have

to establish departure coordinates for each

angle of the shell, we can use the

'A','S','D',and ,'F keys for this. Then we'll

need to detect the screen sides and top to

know when to stop the shell travel. And
when the shell comes in contact with a tar-

get that needs detection and appropriate

follow up action such as replacing the shell

with a burst and a bit of sound, making the

target disappear, and providing a scoring

update.

Two groups of three aircraft fly across

the screen in the complete game. The two

groups fly in opposite directions. When all

three of a group have been shot down a

new group reappears elsewhere on the

screen. One group drops bombs on the

tank, the other fires missiles. There is a lot

of interesting program logic involved and it

can be tricky. Something to look forward

to.

Summary
In this segment of Turbo C graphics

programming we have extended our

knowledge of viewports and learned we
can perform fairly decent animation with

the putimage() function. We have also dis-

covered how to use the two text functions,

outtext() and outtextxy() inside a viewport

and employment of sprintfQ for formatted

text. In all this we are also overcoming dif-

ficulties the authors of manuals and vari-

ous texts on graphics allow us to discover

for ourselves. •

User Disks

The code from Multitasking in Forth, Animation with Turbo Q Mysteries ofPC
Floppy Disks, and Real Computing, is available on a 5.25" 360K or 3.5" 720K PC for-

mat disk for $10 postpaid in the U.S.

The complete installation package of Metal 0.6, including C compiler, assembler,

linker, make utility, ROM monitor, host program, and various utilities, is available on

a 3.5" 1.44 MB, 3.5" 720K, or 5.25" 360K PC format disks for $13 postpaid in the

U.S.

26 The Computer Journal / #44

Forth Column
Strings

by Dave Weinstein

This (somewhat belated) column will

be somewhat more diverse than previous

columns, and will also be the first of a two-

part series on strings. First, a discussion of

some of the latest activities in the Forth

community.

Those using Unix based systems (or

some sort of non-standard equipment with

a Unix compatible C and C library) will be

interested in a new (and extremely impres-

sive) Forth from Mikael Patel. TILE
Forth is a large 32-bit Forth, complete

with C source code, documentation, and

all of the features that users of so-called

"fat" Forths have come to expect... More-
over, TILE is the platform upon which a

complete Object Oriented Forth system

(FORTHTalk) is being built. The environ-

ment is the traditional single line Forth

interpreter. Because TILE is designed for

a multitasking environment there is no
editor built in (but public domain Forth

editors exist in abundance). For those who
use EMACS, the TILE package includes a

LISP file to configure a Forth interactive

environment. The fact that such an inten-

sive and well developed package (and

other similar programs, such as F-PC) are

freely released to the community at large

is one of the strengths of the Forth com-
munity. Unfortunately, it also hinders ac-

ceptance in the industry at large. Many
managers are leery of unsupported or

"free" programming languages (although

the support of gcc and g++ have done

much to allay these fears), and there is not

as much of an incentive to write profes-

sional Forth interpreters or true compilers

when the market is not only small, but is

also dominated by free competitors. (This

is probably about the time I should step

off ofmy soapbox)

The other big piece of news is the RTX
2001 giveaway by Harris Corporation.

Harris is running a "Real Time Design

Contest" (well, to be more precise the

contest is being co-sponsored by Embed-
ded Systems Programming and Harris). Es-

sentially, interested people submit design

specifications by April 16, 1990. If the de-

sign is deemed reasonable by the sponsors,

an RTX 2001A development kit is given

to the designer. The finished designs will

be evaluated, with multiple prizes includ-

ing a $10,000 grand prize, two $2,000

prizes for best hardware and best software

respectively, as well as $500 prizes for the

runners up in the aforementioned catego-

ries. The contest (as described by Harris)

will include a giveaway of up to 1000 sys-

tems. When I spoke to Harris to find out

where my application form was, I discov-

ered that they have been swamped with

interested callers. (Whether they'll up the

number of systems to be given away is an-

other matter). Finally, winning designs will

be shown at the second annual Embedded
Systems Conference (September 25-28,

1990) in Burlingame, California.

Strings and String Handlers
There are two common ways of ex-

pressing strings. The first, or Pascal style, is

with a length field preceding the string.

The second, or C style (also called AS-
CIIZ) is with a null (ASCII 0) character as

a terminator. Each of these implementa-

tion methods has its advantages. Pascal

style strings make determining the length

of a string trivial, and allow possible

shortcircuiting of string comparisons (if

they are of different lengths, don't even

bother with the comparison). The primary

advantage of the C implementation (other

than the fact that it is the more common,
and therefore more useful when dealing

with most operating systems) is that it

places no limitations on the size of the

string. In the true spirit of flexibility (or

was that waffling), we'll just go ahead and
use both.

This column will sketch out possible

implementation methods for the strings,

and design the object shell (in other words,

we'll know how to deal with the strings,

but we won't actually implement the code

until next issue). There are a few reasons

for this (other than time and space consid-

erations). First, one of the biggest advan-

tages of an object oriented approach is

that it allows us to discount the implemen-
tation completely. If written properly, we
should be able to change the implementa-

tion of a class and have all code which uses

objects of that close continue to work. Sec-

ondly, next issue will contain at the very

least two implementations of the strings,

one with a maximum length string, and the

other, using a memory management ob-

ject, with variable length strings. There

would not be enough room to combine
that code with the design details, so we'll

split them.

Valid Operations on Strings

Before even starting laying code for

strings, we need a list of valid operations

on strings, and of their functionality. A list

of string operations and brief descriptions

can be found in Figure one.

String Primitives

The first of these operations is, obvi-

ously enough, Create. In an object ori-

ented implementation, this function will be

performed as part of the initialization

process (the object oriented package we
are using supports auto-initialization of

objects). This is perhaps the most implem-
entation dependent of the operations, be-

cause it is responsible for putting the ob-

ject in a state where all of the other opera-

tions are valid. Because of this, it won't

really be covered in detail until next issue,

when I start talking about implementa-

tions.

The second operation is Clear. Simply

enough, it sets a given string to be the null

string.

The third, fourth, fifth, sixth, and sev-

enth operations all are information acces-

sors. They do not change the string at all.

Length, simply enough, returns the length

of a given string, Error? returns a flag,

which is true if a previous operation has

set the error state, and Extract. Extract re-

turns the nth character of a given string,

with the error flag set if n is greater than

the length of the string. The last of the

accessor operations, Full? and Empty?, re-

turn booleans, and are true if the string in

question is full or empty respectively.

The last two operations actually change

the string they act upon. ClearError, sim-

ply enough, resets the error flag in the

String object. Concatenate, given a charac-

ter, appends that character to the string.

The objects internal error flag is set if the

string was already full.

These are the string primitives. They
are the only operations which need to be

The Computer Journal / #44 27

implemented as methods in the String ob-

ject, because all other valid string opera-

tions can be written in terms of these. Any-
thing else which we need can be coded as

standard Forth words. The resulting code
would be highly inefficient, but it could be

done. The remaining operations will in fact

be coded as part of the objects for efficien-

cies sake, but the important idea is that we
don't need to do so.

Other String Operations
The other operations we need for

strings (at least to make them useful) are

slightly more complicated. Again referring

to Figure 1, the operations we will be im-

plementing are...

Compare. Simply enough, this opera-

tion compares the results of two strings,

returning true if they are equal. A more
complicated version of this operation (an

exercise for the reader?) would be to mod-
ify it to have the same functionality as

strcmp () in C. (For non C programmers,

it would return -1 if the first string is "less

than" the second, if they are identical,

and + 1 if the first string is "greater than"

the second).

Append. Given to strings as arguments

(it is a method acting upon the target

string), this operation sets the target string

equal to the second string appended to the

first. Again, ifwe were interested in a mini-

mal object definition, this could be coded

as a loop of Concatenates and Extracts. It

would just be mindbogglingly slow.

ExtractString. Rather than merely ex-

tracting a single character, operation ex-

tracts an entire substring (length and posi-

tion are passed to it along with the string

from which the substring should be ex-

tracted).

PrintString. This operation merely

prints the string. Of all of the operations,

this is the one most likely to be redefined

by sub-classes (so we have PrinterString

class and WindowString class and Ti-

tleString class, and so on).

You'll note that there isn't an opera-

tion given for setting strings from inside of

code. This sort of operation is inherently

non-portable. So rather than design se-

mantics for it here (which will be unusable

for various people, depending on the

Forth implementation being used), the

implementation article (next issue) will

cover the art of getting information into

the strings other than one character at a

time.

Final Thoughts
This has been a short column. Next is-

sue on the other hand, will be larger than

normal (it was a trade off, and it takes

more time to discuss actual coding in-

volved than it does the theory and design).

I still haven't heard what sorts of columns

you'd like to see? (I'm running out of

ideas and running out of them fast). •

Figure 1 : String Operations

Primary Operations

Create (string —
)

Preconditions : None
Postconditions: String intialized

Clear (string —
)

Preconditions: String initialized
Postconditions: String reset to null string

Length (string — len
)

Preconditions: String initialized
Postconditions: No change.

Error? (string — f)

Preconditions: String initialized
Postconditions: No change.

Full? (string — f
)

Preconditions: String initialized
Postconditions: No change.

Empty? (string — f)

Preconditions: String initialized
Postconditions: No change.

Extract
{
position string — char

)

Preconditions: String initialized
Postconditions: Error flag set if position > length.

ClearError (string —
)

Preconditions: String initialized
Postconditions : Error flag cleared

Concatenate (char string —
)

Preconditions: String initialized
Postconditions: Character added to end of string. Length incremented

Error flag set if the string was full.

Secondary Operations

Compare (string-1 string2 — f)

Preconditions: Strings initialized
Postconditions: No change

Append (string-1 string-2 new-string —
)

Preconditions: Strings initialized
Postconditions: string-1 and string-2 unchanged, new-string set

to string-1 + string-2. Error flag in new-string
set if the lengths of string-1 and string-2
combined are greater than the maximum allowed

ExtractString (length position Btring-1 Btring-2 —
)

Preconditions: Strings initialized
Postconditions: string-2 set to a length sized string vhich starts

at position in string-1. Error flag in string-2
set if length is greater than maximum allowed, if
position is illegal, or if position + length is
greater than the length of string-1.

PrintString { string —
)

Preconditions: String initialized
Postconditions: No change.

If You Don't Contribute Anything

Then Dont Expect Anything

TCJ is User Supported

28 The Computer Journal / #44

The Z-System Corner
By Jay Sage

For this issue (and the next) I am going to indulge myself and

write about about something that I enjoy, even though, strictly

speaking, it has nothing to do with Z-System. This subject is MEX-
Plus, the most advanced telecommunications package available for

CP/M computers. I suppose I could argue that there is a philo-

sophical or spiritual connection, since MEX-Plus allows the user

do for telecommunications many of the same things that Z-System

allows one to do with the operating system, namely automate. In

particular, I will be describing MEX-Plus's scripting capabilities,

which are similar in some ways to alias and ARUNZ scripts in Z-

System.

I had been hoping that a regular MEX column would develop

here in TCJ, but that hasn't happened. Two of the people who
might have gotten it going, Bruce Morgen and Rick Charnes, are

now employed in the MS-DOS industry, and, after programming

all day professionally, they don't seem to have as much energy left

for hobby computing as they used to. Recently, David Goode-

nough, author of the QTERM telecommunications package, came

over to my house and got QTERM running on my SB180 with its

Wyse 50 terminal. I am enormously impressed with what David

has accomplished with this program; it is rapidly developing many

of the capabilities of MEX-Plus. I can envision much discussion in

the future of both MEX-Plus and QTERM scripts. You can also

expect an article or two about QTERM.

For this column I will give an overview of MEX's command
structure, and next time I will describe in detail my suite of scripts

for using PC-Pursuit as an example of what can be done using

those commands. (I originally planned to cover both in one article,

but after finishing the description of the commands, I was already

Jay Sage has been an avid ZCPR proponent since the very first

version appeared. He is best known as the author of the latest ver-

sions 3.3 and 3.4 of the ZCPR3 command processor and for his

ARUNZ aliasprocessor and ZFILER point-and-shoot shell

When Echelon announced its plan to set up a network ofremote

access computer systems to support ZCPR3, Jay volunteered imme-

diately. He has been running Z-Node #3 for more than five years

and can be reached there electronically at 617-965-7259 (MABOS
on PC-Pursuit, pw=DDT). He can also be reached by voice at 617-

965-3552 (between 11pm and midnight is a good time to find him at

home) or by mail at 1435 Centre St., Newton, MA 02159. Jay is now
also the Z-System sysop for the GEnie CP/M Roundtable and can

be contacted as JAY.SAGE via GEnie mail or chatted with live at

the Wednesday real-time conferences (10pm Eastern time).

In real life, Jay is a physicist at MIT, where he tries to invent

devices and circuits that use analog computation to solve problems

in signal, image, and information processing. His recent interests

include artificial neural networks and superconducting electronics.

He can be reached at work via Internet as SAGE
@LL.LL.MIT.EDU.

at my limit.) Along the way I will try to point out some of the bugs

and idiosyncrasies that users have discovered in MEX commands

and suggest means to get around them. I hope that my examples

will help give others ideas about how to make better use of MEX-
Plus. Although regrettably I have had very few takers in the past, I

again extend an invitation to readers to send me suggestions and

examples for scripts.

Overview of MEX Commands
The original CP/M telecommunication program MODEM7

and its derivatives, such as IMP, operate in two modes: terminal

mode and command mode. Terminal mode is used for talking to

the remote system, while command mode is used to control the

local system. These programs have a relatively small set of com-

mands falling principally into two classes: those required for file

transfers and those related to the setup of the program.

In MEX-Plus the arsenal of commands is extended

enormously, and anything that could be done from terminal mode
can be done from command mode as well. (You would not want

to run an interactive session this way, but it could be done.) There

are so many commands that, though I will mention almost all of

them, I will not be able to explain them all in detail. Rather, I hope

to give you a general picture of the kinds of tools one has to work

with in MEX-Plus. I will take up the commands in groups.

Setup Commands
Most of MEX's configuration is controlled by three commands:

STAT, SET, and TSET. The STAT command works with more

than 50 different options! All of them can display information

about how the system is configured, and all but a few also allow

the configuration to be changed. The MEX STAT parameters fall

into four classes: switches, characters, values, and miscellaneous.

Switches have values of ON or OFF. One example is FILTER,

which controls whether MEX will filter from the incoming modem
stream any control characters other than tab, backspace, carriage

return, and linefeed. If one wants to perform full screen opera-

tions, this filter must be off. Otherwise, the escape characters that

initiate a screen control sequence will be swallowed by MEX.

Character STAT parameters take a single ASCII character as

their value. An example is SEP, the multiple command separator

(like Z-System, MEX-Plus allows multiple commands on a line).

Value parameters take on numerical values. For example, PAGE
sets the number of lines in a page on the screen, and CLOCK is

set to the clock speed of your microprocessor chip so that timing

delays will come out right. The miscellaneous STAT parameters

mostly control the display of groups of information. "STAT ?" lists

all the STAT parameters; "STAT VAL" shows the value parame-

ters.

The SET command controls the modem setup. It is used for

setting the baud rate, word length, number of stop bits, and parity

mode. The TSET command was one I never used until working on

this article. It controls special features related to the terminal

The Computer Journal / #44 29

(what it does depends on the terminal you are using). With my
Wyse 50, a TSET parameter can force all characters to be dis-

played in upper case characters or in highlighted video (that

should give you some idea of why I have never used this com-

mand).

Operating System Commands
Another group of commands deals with the interface to the

operating system.

Naturally, there has to be a way to get out ofMEX and back to

the operating system prompt. Have you ever been trapped inside a

program, not knowing how to exit? Well, MEX author Ron
Fowler must have had such a harrowing experience, because he

has six (count 'em!) commands for getting out: BYE, EXIT,

QUIT, CPM, DOS, and SYSTEM. SYSTEM must come from

. BASIC, which is the only CP/M program I ever became trapped

inside. MEX-Plus is available in an MS-DOS version as well, and

that is where the exit command DOS comes from. As a CP/M
diehard, I take great pleasure, as you can imagine, in exiting from

my DOS version using the command CPM (it doesn't help— I'm

still in MS-DOS after I exit).

There are commands for doing operating system chores: DIR,

REN, ERA (or, following MS-DOS, DEL), TYPE, and LOG
(change drive/user). Some of these commands not only perform

their functions; they also return information for use in a script file.

DIR, for example, sets a special variable to the number of match-

ing files found, and thus can be used to determine whether a par-

ticular file exists or not.

There are the commands KEY for associating strings with any

ASCII key on the keyboard and PHONE for entering phone num-

bers into a dialing library. The key definitions and phone number

library can be stored in disk files with the respective extensions

KEY and PHN. The commands SAVE and LOAD write the data

to and read the data from the files.

MEX-Plus has a facility, via the INSTALL command, to load

optional extra code modules. One such module (the REMOTE
module) allows MEX-Plus to be operated as a remote access sys-

tem. I have used this with both direct wire and modem connec-

tions between machines. The former is handy when two machines

are connected by a cable, as it relieves one of the need to run back

and forth between the two keyboards to issue file transfer com-

mands. I sometimes leave my system at work in remote mode so

that I can call it from home to pick up a file that I forgot to take

with me. Other optional modules support emulation of various

terminals, including the VT100.

The TERM and TERMA commands open a file to record the

incoming character stream from the modem. TERM creates a

new file, while TERMA appends the new text to an existing file.

The terminal mode commands T, L, and E described below can

also take an optional 'A' suffix and capture file name. In those

cases, once the capture file has been opened, MEX is put into

terminal mode. The TERM and TERMA commands leave MEX
in command mode for further script processing. The VIEW com-

mand allows the contents of the capture file to be reviewed while

online, thereby affording some scroll-back capability (that is, a way

to see text that has already scrolled off the screen). WRT closes

the capture file (saves it) when you are done; DEL discards it.

The ALT command specifies an alternate drive/user area (in

addition to the currently logged one) where MEX can search auto-

matically for files (e.g., scripts, phone directory, etc.). The

SEARCH command tells MEX how to go about searching for

files, such as whether to search the alternate area before or after

the logged area.

As you can probably guess already, it is not easy to remember

all these commands and the syntax they require. That is where the

HELP command comes in handy. It accesses an extensive HLP
file (over 70K). There is also the wonderful CLONE command,
which creates a new version of MEX (i.e., a new COM file) with

the current configuration embedded— after the STAT, SET,

TSET, and other commands have been used to change parame-

ters to one's liking.

Telephone Interface Commands
MEX-Plus has two phone-dialing commands, CALL and

DIAL. Both accept lists of either literal telephone numbers or

names from the phone library. Numbers and names may be mixed.

Numbers in the library may have associated baud rates, which will

be selected automatically when that number is dialed. An optional

parameter specifies the number of times to try connecting to the

numbers before giving up, and the commands return a value to

indicate which number, if any, was reached. Here is an example:

CALL LADERA 617-965-7259 13

This will alternately called the Ladera Z-Node (whose number is

in the library) and my Z-Node up to three times before giving up.

The commands differ in that CALL puts one in terminal mode

after a successful connection, while DIAL leaves one in command

mode for further script processing.

There is also a way to get out of a connection. DSC will tell the

modem to drop the connection. It can be configured (using a

STAT command, of course) to use either the DTR (data terminal

ready) hardware control line or the Hayes AT hangup command.

Terminal Commands
There are three commands for entering terminal mode. The

command T (terminal) sets up a full-duplex terminal mode. Char-

acters typed at the keyboard are sent to the modem; characters

received from the modem are sent to the screen. Ifyou are to see

what you are typing, the remote system must echo back the char-

acters it receives from you. Most microcomputer BBS systems do

that.

The L (local echo) command sets up a half-duplex terminal

mode. The difference is that the characters that you type are not

only sent to the modem for transmission to the remote system;

they are also echoed locally. This mode would be used with sys-

tems like GEnie that do not normally echo the characters they

receive from you.

Finally, the E (echo) command sets you up as if you were a

remote host. Every character you receive is then echoed back to

the modem. If two people running MEX call each other (or two

machines are hooked up by cable as I mentioned earlier), either

both should be in L mode, or one should be in T mode and the

other in E mode. I prefer the latter, since seeing the characters on

the screen of the machine in T mode assures that the connection is

working. I leave it as an exercise to the reader to figure out what

will happen if both machines are in E mode. (Hint: feel free to

experiment; you can get out of the infinite loop by exiting from

terminal mode; you don't have to reboot.)

File Transfer Commands
Files are sent to the other computer using the S command, and

received from the other computer using the R command. MEX-
Plus supports three file transfer protocols: KERMIT, XMODEM,
and YMODEM. The default protocol is set with the PROTO
command. The protocol can also be specified explicitly using a

prefix (K, M, or Y) to the S or R command.

30 The Computer Journal / #44

The commands will also accept any of several suffixes as well.

The suffix B indicates a batch-mode transfer. The K suffix with the

S command indicates that the file should be sent in blocks of IK
bytes instead of the standard 128 bytes. If you append T, L, or E,

you will return to the corresponding terminal mode after the trans-

fer is completed. The D and X suffixes will tell MEX to disconnect

from the remote system after the transfer is finished; with D you

will return to MEX, while with X you will exit MEX as well. Here

is an example.

YSBKX FILE1 FILB2 FILE3

This will send the three files using YMODEM batch with IK

blocks, hang up the phone, and exit from MEX.
Transactions with a host in the KERMIT server mode are sup-

ported with a number of special commands (KGET, KPUT,
KBYE, KLOG, KFIN).

Video Commands
These are the commands that Rick Charnes loves so! There

are commands for cursor addressing (@), beginning and ending

the use of up to four video attributes (START and END), display-

ing special line-drawing graphics characters (DRAW), and creat-

ing lines and boxes (HLINE, VLINE, BOX). The screen can be

cleared (CLS). It can also be turned on and off (SCREEN) so you

can control what output is seen and what is not.

Variables

It is hard to do very sophisticated processing without variables.

MEX-Plus offers variables of two types: numerical and string. The

former are 16-bit integers (i.e., numbers from to 65535); the

latter are strings of up to 32 characters.

There are 26 numerical user variables designated by a percent

sign followed by a letter (case does not matter, e.g., %a or %S).

There are six string variables designated by the letters A through

F. IVe never run out of numerical variables, but I sure wish there

were more string variables.

There are also two special numerical variables called VALUE
and STACK The former is used to hold the value returned from a

number of MEX commands (DIR and DIAL/CALL were men-

tioned earlier). STACK is a more long-lived variable that can be

exchanged in various ways with VALUE (the commands PUSH,
POP, and XCHG). I think these are left over from earlier versions

of MEX that did not offer the 26 user variables. There is little

reason to use STACK any more. There are three special opera-

tions (ADD, SUB, and XOR) that can be performed on the

VALUE variable. I've never found any use for these, either.

MEX can evaluate arithmetic expressions consisting of combi-

nations of literal numbers, numerical variables, and arithmetic op-

erators (+-*/). Here is an example that returns the least significant

byte of the two-byte variable %V:

%v 256 * (%V / 256
)

Numbers can be entered in hexadecimal format by prefixing the

number with a dollar sign ($100 is 256).

The value of an expression is assigned to a variable by the equal

operator (=) as in %B=%A+3. NOTE: in most places in MEX-
Plus, extra spaces may be included in command expressions. How-

ever, there are unfortunately a number of bugs in MEX-Plus, and

some raise their heads in this area. Therefore, I recommend that

extra spaces be omitted in working scripts (as opposed to fully

commented reference versions, where extra spaces might be in-

cluded to improve readability).

SAGE MICROSYSTEMS EAST
Selling & Supporting the Best in 8-Bit Software

• Automatic, Dynamic, Universal Z-Systems

- Z3PLUS: Z-System for CP/M-Plus computers ($70)

- NZCOM: Z-System for CP/M-2.2 computers ($70)

- ZCPR34 Source Code: if you need to customize ($50)

• Plu*Perfect Systems

- Backgrounder ii: CP/M-2.2 multitasker ($75)

- ZDOS: date-stamping DOS ($75, $60 for ZRDOS owners)

- DosDisk: MS-DOS disk-format emulator, supports subdirecto-

ries and date stamps ($30 - $45 depending on version)

• BDS C — Including Special Z-System Version ($90)

• Turbo Pascal — with New Loose-Leaf Manual ($60)

• SLR Systems (The Ultimate Assembly Language Tools)

- Z80 Assemblers using Zilog (Z80ASM), Hitachi (SLR180), or

Intel (SLRMAC) Mnemonics

- Linker: SLRNK
- TPA-Based ($50 each) or Virtual-Memory (Special: $160 each)

• ZMAC — Al Hawley's Z-System Macro Assembler with Linker ($50)

• NightOwl (Advanced Telecommunications)

- MEX-Plus: automated modem operation with scripts ($60)

- MEX-Pack: remote operation, terminal emulation ($100)

Next-day shipping of most products with modem download and support

available. Order by phone, mail, or modern. Shipping and handling $3 per

order (USA). Check, VISA, or MasterCard. Specify exact disk format.

Sage Microsystems East
1435 Centre St., Newton Centre, MA 02159-2469

Voice: 617-965-3552 (9:00am - 11:30pm)

Modem: 617-965-7259 (pw=DDT) (MABOS on PC-Pursuit)

Literal string expressions are composed by surrounding text

with double-quote characters ("). The MEX manual says that val-

ues are assigned to string variables using the STORE command as

in:

STORE "this is a test" TO A.

Experiment shows that the following simpler, undocumented syn-

tax also works: A="test". Here I know from bitter experience that

there should be no extra spaces around the equal sign. It often

works, but not always. Most commands that accept quoted literal

strings will also accept string variables (e.g., B=A or COMP A
"yes").

Command line parameters are also available to scripts; they are

passed in the form of variables represented by the numbers 1

through 9 surrounded by curly braces. These variables can always

act as strings. If they express a number, they can also be used as

numerical expressions. Thus, we might have A="{1}" or

%A={1}. The latter expression will produce an error if the first

command line token does not represent a number.

If the script invocation command line does not have a token

referenced by an expression of the form {1}, {2}, etc., the script

will bomb with an error message. The expression {n:default} al-

The Computer Journal / #44 31

lows a default value to be used for parameter 'n' if none is

given on the command line. This default value can be null,

as in {1:}.

String variables can, like the command line tokens, be

represented in expressions by curly braces around the letter

(e.g., {B}). In such a case, the value of the expression is the

string of characters alone, and double quote characters

must surround the expression in most situations. There are

exceptions. The SAY and SENDOUT commands (de-

scribed in the next section) can be used directly with a vari-

able, as in SAY A The following two commands are

equivalent:

SAY "Variable A has the value: ",A, "/n"

SAY "Variable A has the value: {A}/n"

The curly-brace expressions can be used to concatenate

text, as in

A="{B} and <C}"

Expressions of this type are not documented and work only

in script files; they will not work if entered directly at the

MEX command prompt. Similar expressions can also be

used to finesse variables into commands that normally do

not take them. Here are some examples:

"LOOP")

1200")

set baud {b}

set baud {c}00
goto {1}

(a)

(where, say, B="1200")
(where, say, C="24")
(where, say, token 1 is

(where, say, A="set baud

I have not figured out how to split a string variable into

parts (such as words). I also had never been able to figure

out a way to convert a numerical variable into a string. I still

can't do it directly (things like B = {%B} do not work), but

the script in Figure 1 does it indirectly (inventions like this

are part of the fun of writing this column). You may not be

able to fully understand that script until you have read

through the rest of the command descriptions.

Input/Output Commands
Programs generally are not terribly useful if there is no

way to get data in or out. Here is what MEX-Plus offers.

The SAY command allows one to send characters to the

screen. It accepts arguments of literal strings, string vari-

ables, and numerical expressions, as in

SAY "The sum is",%A+%B, "/n"

There are special character codes, such as "/n" (newline) or

"/r" (return). Combined with the video commands men-

tioned earlier, the SAY command can produce some pretty

fancy displays.

There is also the undocumented PRINT command that

does almost exactly what SAY does, except that it does not

need quotation marks around the literal text and does not

interpret any special expressions. To PRINT, everything is a

pure string. There are, thus, a couple of things PRINT can

do that SAY cannot. Here are some examples:

PRINT Please enter "Hello" at the prompt.

PRINT Use the expression {1} for a token.

In the first case, PRINT allows one to send a double quote

B="" initialize to null string
%y=%b set up scratch variable %y

LABEL LOOP loop
%x=%y-10*(%y/10) get the lowest digit (%y MOD 10

)

if %x=0 B=-0<B}" preconcatenate the appropriate digit
if %x=l B="1{B}"

if %x=2 B="2{B}"
if %x=3 B=-3{B}"
if %x=4 B="4{B}"
if %x=5 B="5{B}"

if %x=6 B="6{B}"

if %x=7 B="7{B}"
if %x=8 B="8{B}"
if %x=9 B-"9{B}"
»y=%y/10 divide number by 10

if %y>0 GOTO LOOP continue until number is reduced to

Figure 1 . Commented liBting of a script that will convert the

numerical variable IB into string form in string variable B, from

which it can be used in various commands, such as: SET BAUD .

This code could be made into a subroutine by adding the command
PROC NUM2STR at the beginning and ENDP at the end. If you try

this script, do not enter the comments, of course.

character to the screen. In the second case, a string that would be a

variable expression can be displayed.

The SENDOUT command is used to send literal text or the contents

of string variables to the modem. The PREFIX and SUFFIX commands

can be used to define strings that are automatically sent before and after

the designated text to save one the trouble of having to include certain

characters (such as, perhaps, a carriage return and linefeed) explicitly

with each string. Longer, fixed strings can be sent using the TRANSMIT
command, which sends the contents of a file just as if you were typing it in

terminal mode. A pair of delay constants controls the speed with which

this "automatic typist" performs.

The INPUT command allows interactive entry of the value for a nu-

merical variable; ACCEPT does the same thing for a string variable. The

TIME and DATE commands allow one to access a real-time clock. Be-

sides displaying the information on the screen, the commands are sup-

posed to put the corresponding data into the VALUE variable. There is a

bug here, and the time value is used by both commands. There appears

to be no way to determine the date from within a script. The PEEK and

POKE commands allow one to look at and modify memory for the ulti-

mate in hacking from a script! (That probably means that there would be

a way to find the date if one really needed it badly. It also means that the

complete Z-System environment can be accessed.)

Flow Control Commands
Like Z-System, MEX-Plus has flow control commands to allow a

script to perform tests and to act differently depending on the results.

There is the standard set of flow commands IF, ELSE, and ENDIF. They

support 8 levels of nesting (just like Z-System). Here is an example:

IF %B=1200

B="1200"
ELSE

B="2400"
ENDIF

Additionally, there is a single-line IF command. It is distinguished

from the multiple-line IF by a command (a 'then' clause) that is part of

the IF statement. Here is an example:

IF %B=2400 B="2400";SAY "2400 bps";GOTO CONTINUE

With the single-line IF, when the test fails, the entire line is ignored.

Please note that had there been a semicolon after the "IF %B=2400",

then this would have been a multiple-line IF (albeit with several of its

32 The Computer Journal / #44

'lines' on one line).

The single-line IF command comes in especially handy, because

it is generally awkward to perform a GOTO jump out of an IF/

ELSE/ENDIF block. Although the manual warns against it, there

is (I'm pretty sure) no harm per se in doing it. It is just that you

have to make sure that the ENDIF is not skipped lest you get

nested deeper and deeper. As with Z-System, you have to make

sure the IFs get terminated; unfortunately, this is not so easy,

. because, unlike Z-System, MEX-Plus has no XIF or ZIF com-

mand. Here is a very convoluted example of a way in which it

could be done:

if %b

say "TRUE/n"

goto cont
endif

say "FALSE/n"
goto done

label cont
endif

label done
Bay "Now we are done/n'

'

There is also a SKIPIF command. If its test is true, then the

next command is skipped. Note well that while the IF command
may skip an entire line of commands, SKIPIF skips only one com-

mand, no matter how many commands may appear on the same

line.

Numerical Tests

Row control would not be very useful without ways to test

things. First we will consider tests on numbers.

Test results are expressed numerically, with representing false

and non-zero (usually 1) representing true. You can see this for

yourself by entering the command "SAY 1<2" or "SAY 1>2".

The following logical operators can be used for comparisons:

equals (=), not equals (<>), less than (<), less than or equal to

(<= or =<), greater than (>), or greater than or equal to (> =

or =>). Note that the MEX manual has a misprint in one place

and gives the not-equal-to operator as '!'. That is incorrect and will

not work.

Although comparison tests return a numerical value, those val-

ues for some reason cannot be used in arithmetic expressions. In

other words, you can't have (%A>%B)*(%A<%C). As far as I

can tell, this means that you cannot perform compound tests, such

as "IF %A>%B AND %A<%C". Performing such compound

tests is made more difficult by the fact that the 'then' clause of a

single-line IF cannot be another IF. If you won't be using GOTO,
nested multi-line IF commands will do the trick. Otherwise, you

might have to resort to some explicit arithmetic as in the following:

%z=l
if %a<=%b then %z=0

if %a>=%c then %z=0

if %z then

We started out assuming TRUE (%z=l). Then if either condition

was false, we set %z to false.

Before we leave this topic (I know we've been here a long

time), I have to mention that MEX has a bug that causes it to

issue fallacious but very annoying error reports when comparison

operations are performed with numerical variables having particu-

lar values. I have carried out a number of experiments to try to

determine the exact circumstances under which this problem oc-

curs, but so far I cannot fathom a pattern. The trouble often ap-

pears, however, with comparisons to standard data rate values,

such as 300. To get around the problem, I sometimes divide the

variable by 100, compare it to 3, 12, or 24, and then multiply it by

100 to restore its original value. What a pain!

String Tests

Strings are compared using the COMP command. It accepts

two strings, each of which can be either a literal string or a string

variable. The result of the comparison is returned in the VALUE
variable, which can then be tested for a value of or 1. The STAT
CASE setting determines whether the comparison will be case sen-

sitive or not. There is a bug with the COMP command; it will not

give the answer 1 (true) when both strings are null (""), though it

will work if only one string is null. If you want to see if a command
line token was given, you can use the following tests:

COMP "{1:} • "

COW "{1:}X" "X"

An extra character (space or 'X') is concatenated to the string

represented by {1:}. You might also use

COMP "{l:null}- -null"

Here, the first parameter cannot be null. If token 1 is not given,

the default value "null" will be used instead. Of course, if the user

enters "null", the same result will be obtained. The two earlier

examples are, thus, more robust.

There is one oddball command that I don't know where to put:

SLEEP. It is sort of a flow control command, so I'll stick it here. It

just tells the system to go to sleep (pause) for a designated time

interval.

Program Control Commands
MEX-Plus supports several script program structures. The

main unit of a script program is a script file, which has a file exten-

sion of MEX. It can be invoked as a main program by the READ
command. It can also be invoked as a subprogram by the DO
command, which allows scripts to be nested. I do not know how

deep this nesting can be, but I just tested it to five levels. The

STOP command is used to exit from a READ or DO command.

In the former case, control returns to the MEX program (possibly

in terminal mode); in the latter, control returns to the script that

called the current script. A script also terminates automatically at

the end-of-file. The STOP command unfortunately displays an

annoying message about the script being aborted. To exit grace-

fully, it is better to put a label at the end (e.g., LABEL END) and

to exit using GOTO END.

A READ command may be given inside a script. In this case,

control is transferred to the new script, which overwrites the old

script in memory. With the DO command, the new script lines are

read into memory along with the currently running script.

I always enjoy writing these columns because I end up asking

some new questions and learning some new answers. Just now, to

see how MEX works, I was examining the memory image after a

MEX script file ran. First, I learned that the script text is stored

backwards in memory starting from near the top. I verified that

after each DO is finished, the memory is reclaimed and is available

for use by another subroutine script. I also discovered that the

entire script file, including all comments, is read into memory.

We can draw some important conclusions from these observa-

tions about how complex scripts should be implemented. First,

there are several advantages to using versions of script files from

which comments have been stripped. The files will, of course, load

The Computer Journal / #44 33

faster, and there will also be more room in memory for such

things as file transfer buffers. Many MEX users have run into

problems of insufficient memory while running complex

scripts. Second, it is a good idea to chain from one script to

another rather than building everything into a single script. In

my PC-Pursuit script, I chain to a very small script just after

the remote system has been reached and the script is about to

put me into terminal mode.

Structure is permitted within an individual script file as

well in the form of internal subroutines. Subroutines begin

with a PROC (procedure) command and end with an ENDP
(end-procedure) command. They are invoked by the

GOSUB command. Again, I do not know how deeply they

may be nested, but I just tested them to 9 levels.

Script files may also contain unstructured program group-

ings (that anathema to modern structured programming).

The LABEL command allows any point in the script to be

given a name, and the GOTO command allows a branch to

that point. The manual indicates that the name may have up

to 16 alphabetic characters and warns that the line with the

LABEL command may not have any other commands on the

line. I know that I have run afoul of that restriction in the

past, but, oddly enough, in my testing now I was totally un-

able to generate a problem. I tried everything I could think

of: an immediate semicolon, a semicolon after a space or a

tab, tabs after the semicolon. They all worked just fine (how

could MEX tell that this was just a test?).

The manual is clearly wrong when it says that only alpha-

betic characters can be used. I assumed that it really meant

alphanumeric, but in my experiments I learned that abso-

lutely any characters can be used, including spaces! Here are

the rules that emerged from my testing. First, all spaces and

tabs after the LABEL command are ignored. That point

marks the beginning of the name. Next one starts from the

end of the line or the command separator character and

strips all tabs and spaces backward. That point marks the end

of the name. What is between those marks is taken as the

label. For example, one can have a label of "ENTRY 1"

(with the embedded space and with or without the quote

characters, in fact). Mind you, I am not by any means sug-

gesting that you use such labels. As I mentioned before, I

have not always found MEX to behave exactly the way it did

in these experiments. If anyone can figure this out more pre-

cisely, I would really like to hear about it.

The other thing I learned from these experiments is that

MEX always scans for a label from the beginning of the

script. This means that if you use the same label a second

time, the second occurrence will never be found.

One Script Example

I just don't feel right about presenting all this information

about MEX-Plus commands without showing at least one

real-life example. Figure 2 shows the final script in my PC-

Pursuit script suite. Once I have successfully connected to the

outdial city and reached the remote system there, I chain to

this script. Let's look at it line by line.

The first line begins with a period, so it is a comment. I

always include a title line and often add some description of

the function of the script and the parameters it takes.

The real work of the script begins at line 3. In many parts

of the script, I do not want the output from commands to

show on the screen. Now I do, so I issue the "SCREEN ON"

01

02

03

04

05

06

07
08

09
10

11

12

13

14

. . PCPCONN SCRIPT — Connected to Destination System

screen on

els
say "Connected to
t

',F, " at ",B,"00 bps/n/n"

LABEL LOOP
say "/nEnter single HEX command (or M for menu):

accept A
comp A "M"

if value=l READ PCPMENU

GOTO LOOP

Figure 2. This is the final script in my PC-Pursuit suite. Just

after connecting to a remote system, I chain to this script to

free up as much memory as possible for other uses, such as

capture buffers and/or file transfer bufferB. Line numbers have

been added for reference purposes in the text.

command. I'd also like to start with a clean screen, so I issue CLS, too.

In line 5, the script tells the user the name of the system that has

been reached (that was previously stored in string variable F) and at

what baud rate (previously stored in string variable B). Then the script

drops one into terminal mode, where one can work interactively as long

as one likes.

When terminal mode is exited (by pressing <ESC> E), the script

resumes at the label LOOP. Line 9 prompts the user to enter a com-

mand. If the user enters "M", then the main menu script is run, allow-

ing one to call another system in another or the same city. Line 10

accepts the answer from the user and places it into string variableA
In line 11, the user's answer is compared to the string "M". If it was

"M", then the variable VALUE will have the value 1 (true), and line 12

will cause the script to chain to the script file PCPMENU.MEX. If the

user entered anything other than "M", then execution will continue at

line 13, where the user's command is executed. When that command

has completed, control will return to line 14, which branches back to

label LOOP and a prompt for another command.

The user's command can be just about anything. For example, if it is

"T", then MEX will enter terminal mode for more interactive work.

The one restriction I have found, is that only a single command can be

entered. A multiple command line, with commands separated by semi-

colons (or whatever the designated SEP character is), does not work for

reasons I do not yet understand. Maybe I will have figured it out (or

one of you will have) by next time, when I will cover the real guts of the

PC-Pursuit script. •

M O VlN G?
Make certain that TCJ follows you

to your new address. Send both old and

new address along with your

expiration number that appears on

your mailing label to

:

THE COMPUTER JOURNAL
190 Sullivan Crossroad

Columbia Falls, MT 59912

If you move and don't notify us, TCJ
is not responsible for copies you miss.

Please allow six weeks notice. Thanks.

34 The Computer Journal / #44

THE COMPUTER JOURNAL

Back Issues

wc

\>-s\^*oe '

&y

o \̂*A^v^ ,ss'
,oel

a<®
^\\»S>\®

a\
*\®

teflŜ

,t\°£

Issue Number 24:

tf^l

Issue Number 1:

• RS-232 Interface Part One
• Telecomputing with the Apple II

• Beginner's Column: Getting Started

• Build an ""Epram"

Issue Number 2:

• File Transfer Programs for CP/M
• RS-232 Interface Part Two
• Build Hardware Print Spooler: Part 1

• Review of Floppy Disk Formats

• Sending Morse Code with an Apple II

• Beginner's Column: Basic Concepts and

Formulas

Issue Number 3:

• Add an 8087 Math Chip to Your Dual

Processor Board

• Build an A/D Converter for Apple II

• Modems for Micros

• The CP/M Operating System
• Build Hardware Print Spooler: Part 2

Issue Number 4:

• Optronics, Part 1: Detecting,

Generating, and Using Light in Electronics

• Multi-User: An Introduction

• Making the CP/M User Function More

Useful

• Build Hardware Print Spooler: Part 3

• Beginner's Column: Power Supply

Design

Issue Number 8:

• Build VTC-20 EPROM Programmer.

• Multi-User: CP/Net
• Build High Resolution S-100 Graphics
Board: Part 3.

• System Integration, Part 3: CP/M 3.0.

• Linear Optimization with Micros.

Issue Number 16:

Debugging 8087 Code

Using the Apple Game Port

BASE: Part Four

Using the S-100 Bus and the 68008 CPU
Interfacing Tips & Troubles: Build s

"Jellybean" Logic-to-RS232 Converter

Issue Number 18:

• Parallel Interface for Apple II Game Port

• The Hacker's MAC: A Letter from Lee

Felsenstein

• S-100 Graphics Screen Dump
• The LS-100 Disk Simulator Kit

• BASE: Part Six

• Interfacing Tips & Troubles: Com-
municating with Telephone Tone Control,

Parti

Issue Number 19:

Issue Number 20:

• Designing an 8035 SBC
• Using Apple Graphics from CP/M: Turbo

Pascal Controls Apple Graphics

• Soldering and Other Strange Tales

• Build a S-100 Floppy Disk Controller:

WD2797 Controller for CP/M 68K

Issue Number 21:

• Extending Turbo Pascal: Customize with

Procedures and Functions

• Unsoldering: The Arcane Art

• Analog Data Acquisition and Control:

Connecting Your Computer to the Real

World

• Programming the 8035 SBC

Issue Number 22:

• NEW-DOS: Write Your Own Operating

System
• Variability in the BDS C Standard Library

• The SCSI Interface: Introductory

Column
• Using Turbo Pascal ISAM Files

• The AMPRO Little Board Column

Issue Number 23:

• C Column: Flow Control & Program

Structure

• The Z Column: Getting Started with

Directories & User Areas

• The SCSI Interface: Introduction to SCSI

• NEW-DOS: The Console Command
Processor

• Editing The CP/M Operating System
• INDEXER: Turbo Pascal Program to

Create Index

• The AMPRO Little Board Column

• Selecting and Building a System

• The SCSI Interface: SCSI Command

Protocol

• Introduction to Assembly Code for CP/M
• The C Column: Software Text Filters

• AMPRO 186 Column: Installing MS-DOS

Software

• The Z Column
• NEW-DOS: The CCP Internal Commands
• ZTIME-1: A Realtime Clock for the AM-

PRO Z-80 Little Board

• Using The Extensibility of Forth

• Extended CBIOS
• A $500 Superbrain Computer
• BASE: Part Seven

• Interfacing Tips & Troubles: Com-
municating with Telephone Tone Control,

Part 2

• Multitasking and Windows with CP/M: A
Review of MTBASIC

Issue Number 25:

Repairing & Modifying Printed Circuits

Z-Com vs Hacker Version of Z-System

Exploring Single Linked Lists in C
Adding Serial Port to Ampro LB.

Building a SCSI Adapter

New-Dos: CCP Internal Commands
Ampro '186 Networking with SuperDUO

ZSIG Column

Issue Number 26:

Issue Number 27:

Issue Number 29:

• Better Software Filter Design

• MDISK: Adding a 1 Meg RAM disk to

Ampro L.B., part one.

• Using the Hitachi HD64180: Embedded

processor design.

• 68000: Why use a new OS and the 68000?

• Detecting the 8087 Math Chip

• Floppy Disk Track Structure

• The ZCPR3 Corner

Issue Number 30:

• Bus Systems: Selecting a System Bus

• Using the SB180 Real Time Clock

• The SCSI Interface: Software for the

SCSI Adapter

• Inside AMPRO Computers

• NEW-DOS: The CCP Commands Con-

tinued

• ZSIG Corner

• Affordable C Compilers

• Concurrent Multitasking: A Review of

DoubleDOS

• 68000 TinyGiant: Hawthorne's Low Cost

16-bit SBC and Operating System
• The Art of Source Code Generation:

Disassembling Z-80 Software

• Feedback Control System Analysis:

Using Root Locus Analysis and Feedback

Loop Compensation
• The C Column: A Graphics Primitive

Package
• The Hitachi HD64180: New Life for 8-bit

Systems
• ZSIG Corner: Command Line Generators

and Aliases

• A Tutor Program for Forth: Writing a For-

th Tutor in Forth

• Disk Parameters: Modifying The CP/M

Disk Parameter Block for Foreign Disk

Formats

Issue Number 28:

• Starting your Own BBS
• Build an A/D Converter for the Ampro

L.B.» HD64180: Setting the wait states &

RAM refresh, using PRT & DMA
• Using SCSI for Real Time Control

• Open Letter to STD-Bus Manufacturers

• Patching Turbo Pascal

• Choosing a Language for Machine Con-

trol

• Double Density Floppy Controller

• ZCPR3IOP for the Ampro LB.
• 3200 Hacker's Language
• MDISK: 1 Meg RAM disk for Ampro LB,

part 2

• Non-Preemptive Multitasking

• Software Timers for the 68000

• Lilliput Z-Node
• The ZCPR3 Corner

• The CP/M Corner

Issue Number 31:

• Using SCSI for Generalized I/O

• Communicating with Floppy Disks: Disk

parameters and their variations.

• XBIOS: A replacement BIOS for the

SB180.

• K-OS ONE and the SAGE: Demystifing

Operating Systems.

• Remote: Designing a remote system

program.

• The ZCPR3 Corner ARUNZ documen-

tation.

Issue Number 32:

• Language Development: Automatic

generation of parsers for interactive

systems.

• Designing Operating Systems: A ROM
based O.S. for the Z81.

• Advanced CP/M: Boosting Performance.

• Systematic Elimination of MS-DOS

Files: Part 1, Deleting root directories & an

in-depth look at the FCB.
• WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCII terminal

based systems.

• K-OS ONE and the SAGE: Part 2, System

layout and hardware configuration.

• The ZCPR3 Corner NZCOM and ZC-

PR34.

Issue Number 33:

• Data File Conversion: Writing a filter to

convert foreign file formats.

• Advanced CP/M: ZCPR3PLUS, and how
to write self relocating Z80 code.

• DataBase: The first in a series on data

bases and information processing.

• SCSI for the S-100 Bus: Another example

of SCSI's versatility.

• A Mouse on any Hardware: Implemen-

ting the mouse on a Z80 system.

• Systematic Elimination of MS-DOS
Files: Part 2—Subdirectories and extnded

DOS services.

• ZCPR3 Corner: ARUNZ, Shells, and pat-

ching WordStar 4.0

The Computer Journal / #44 35

Issue Number 34:

• Developing a File Encryption System.
• Database: A continuation of the data base
primer series.

• A Simple Multitasking Executive: Design-
ing an embedded controller multitasking ex-

ecutive.

• ZCPR3: Relocatable code, PRL files,

ZCPR34, and Type 4 programs.

• New Microcontrollers Have Smarts: Chips
with BASIC or Forth in ROM are easy to pro-

gram.

• Advanced CP/M: Operating system exten-

sions to BDOS and BIOS, RSXs for CP/M 2.2.

• Macintosh Data File Conversion in Turbo
Pascal.

• The Computer Corner

Issue Number 35:

• All This & Modula-2: A Pascal-like alterna-

tive with scope and parameter passing.

• A Short Course In Source Code Genera-
tion: Disassembling 8088 software to pro-

duce modifiable assem. source code.

• Real Computing: The NS32032.
• S-100: EPROM Burner project for S-100
hardware hackers.

• Advanced CP/M: An up-to-date DOS, plus

details on file structure and formats.

• REL-Style Assembly Language for CP/M
and Z-System. Part 1 : Selecting your assem-
bler, tinker and debugger.

• The Computer Comer

Issue Number 38:

e Information Engineering: Introduction,

e Modula-2: A list of reference books.

• Temperature Measurement & Control: Ag-

ricultural computer application.

• ZCPR3 Comer: Z-Nodes, Z-Plan, Am-
strand computer, and ZFILE.

• Real Computing: NS32032 hardware for

experimenter, CPUs In series, software op-

tions.

• SPRINT: A review.

• REL-Style Assembly Language for CP/M
& ZSystems, part 2.

e Advanced CP/M: Environmental program-

ming.

• The Computer Comer.

Issue Number 37:

• C Pointers, Arrays & Structures Made Eas-

ier: Parti, Pointers.

• ZCPR3 Corner: Z-Nodes, patching for

NZCOM, ZFILER.

• Information Engineering: Basic Concepts:

fields, field definition, client worksheets.

• Shells: Using ZCPR3 named shell vari-

ables to store date variables.

• Resident Programs: A detailed look at

TSRs & how they can lead to chaos.

• Advanced CP/M: Raw and cooked con-

sole I/O.

• Real Computing: The NS 32000.

• ZSDOS: Anatomy of an Operating System:

Parti.

• The Computer Corner.

Issue Number 38:

• C Math: Handling Dollars and Cents With

C.

• Advanced CP/M: Batch Processing and a
New ZEX.

• C Pointers, Arrays & Structures Made Eas-

ier: Part 2, Arrays.

• The Z-System Corner: Shells and ZEX,

new Z-Node Central, system security under
Z-Systems.

• Information Engineering: The portable In-

formation Age.
• Computer Aided Publishing: Introduction

to publishing and Desk Top Publishing.

• Shells: ZEX and hard disk backups.
• Real Computing: The National Semicon-
ductor NS320XX.
• ZSDOS: Anatomy of an Operating System,

Part 2.

Issue Number 39:

• Programming for Performance: Assembly

Language techniques.

• Computer Aided Publishing: The Hewlett

Packard LaserJet

• The Z-System Comer: System enhance-
ments with NZCOM.
• Generating LaserJet Fonts: A review of

Dlgi-Fonts.

• Advanced CP/M: Making old programs Z-

System aware.

• C Pointers, Arrays & Structures Made Eas-

ier: Part 3: Structures.

• Shells: Using ARUNZ alias with ZCAL
• Real Computing: The National Semicon-
ductor NS320XX.
• The Computer Comer.

tosue Number 40:

• Programming the LaserJet: Using the es-

cape codes.

• Beginning Forth Column: Introduction.

• Advanced Forth Column: Variant Records
and Modules.

• UNKPRL: Generating the bit maps for PRL
files from a REL file.

• WordTech's dBXL: Writing your own cus-

tom designed business program.

• Advanced CP/M: ZEX 5.0—The machine
and the language.

• Programming for Performance: Assembly
language techniques.

• Programming Input/Output With C: Key-

board and screen functions.

• The Z-System Comer: Remote access sys-

tems and BDS C.

• Real Computing: The NS320XX
• The Computer Corner.

Issue Number 41

:

• Forth Column: ADTs, Object Oriented

Concepts.
• Improving the Ampro LB: Overcoming the

88Mb hard drive limit

• How to add Data Structures in Forth

• Advanced CP/M: CP/M is hacker's haven,

and Z-System Command Scheduler.

• The Z-System Corner: Extended Multiple

Command Line, and aliases.

• Programming disk and printer functions

wlthC.

• UNKPRL: Making RSXes easy.

• SCOPY: Copying a series of unrelated

files.

• The Computer Comer.

Issue Number 42:

• Dynamic Memory Allocation: Allocating

memory at runtime with examples in Forth.

• Using BYE with NZCOM.
• C and the MS-DOS Screen Character At-

tributes.

• Forth Column: Lists and object oriented

Forth.

• The Z-System Corner: Genie, BDS Z and
Z-System Fundamentals.
• 68705 Embedded Controller Application:

An example of a single-chip microcontroller

application.

• Advanced CP/M: PluPerfeet Writer and
using BDS C with REL files.

• Real Computing: The NS 32000.
• The Computer Corner

Issue Number 43:

• Standardize Your Floppy Disk Drives.

• A New History Shell for ZSystem.
• Heath's HDOS, Then and Now.
• The ZSystem Corner: Software update
service, and customizing NZCOM.
• Graphics Programming With C: Graphics

routines for the IBM PC, and the Turbo C
graphics library.

• Lazy Evaluation: End the evaluation as

soon as the result is known.
• S-100: There's still life in the old bus.

• Advanced CP/M: Passing parameters,

and complex error recovery.

• Real Computing: The NS32000.
• The Computer Corner.

Help TCJ Grow
TCJ is expanding, and we need to inform others about

what we are doing.

You can help TCJ grow by distributing flyers at meetings,

swap meets, etc. Tell us the date of the event and how
many flyers you need, and we'll provide them. Allow three to

four weeks to print and ship the flyers.

Increasing the number of subscribers will enable TCJ to

provide more pages of vital information -your efforts in

finding more subscribers will be appreciated by all.

Tell Your Friends

Subscriptions

1 year (6 issues)

2 years (12 issues)

Air Mail rates on request.

Back Issues

16 thru #43
6 or more

#44 and up
6 or more

Issue #s ordered

U.S. Foreign Total

(Surface)

$18.00 $24.00

$32.00 $46.00

$3.50 ea. $4.50 ea.

$3.00 ea. $4.00 ea.

$4.50 ea. $5.50 ea.

$$.00 ea. $5.00 ea.

Subscription Total

Back Issues Total

Total Enclosed

All funds must be in U.S. dollars on a U.S. bank

Name

Address

Check VISA MasterCard Exp. Date_

Card #

Signature,

The Computer Journal
190 Sullivan Crossroad, Columbia Falls, MT 59912

Phone (406) 257-9119 Mountain Time Zone

36 The Computer Journal / #44

Xerox 16/8 DEM-II Computers
New dual system computers with the Disk Expansion Module. These systems include the following:

• Z80A 4 MHz CPU with 64 K ofRAM
• 8086 4.77 MHz CPU with 128 KRAM

• 2 Serial ports

• 1 Parallel port

• 10 Meg 5.25" hard drive (NOT 8")

• 322 K DSDD floppy drive

• Low-profile programmable keyboard

• Monitor

CP/M-80 2.2, CP/M-86, and "Select" word processor are included. MS-DOS 2.01 is available as an

option for an additional $35.

Cost is $329 plus $50 shipping in the US. This also includes a one year subscription to The Com-

puter Journal (current subscribers should include a photocopy of their label so that their subscription

can be extended). Registered owners of NZCOM receive a discount of $15. If you order NZCOM at

the time of the order, deduct the $15. Order by personal check, bank cashier's check or money order.

Personal checks held ten days. Allow 4 to 6 weeks for delivery.

Chris McEwen - Socrates Z Node 32

PO Box 12, S. Plainfield, NJ 07080

(201) 754-9067 3/12/24 Dps

Technology Resources

K-OS ONE -Single user generic 68000 operating system

for your 68000 hardware. It uses the MS-DOS disk format,

and includes the operating system with source code (written

in HTPL), an editor, assembler, and HTPL compiler. A
sample BIOS code and a boot loader are included. This is

not ready-to-run -you have to install the BIOS on your sys-

tem, but the source code and language compiler are in-

cluded $50

HT-Forth-A full featured, interactive Forth that works

with the K-OS ONE operating system. It uses a full 32 bit

stack and 32 bit arithmetic to take full advantage of the

68000. Programs are position independent and are limited in

size only by the memory available. Source code compiles to

inline macros, JSR, or BSR so there is no inner interpreter

overhead. Standard ASCII files are used. Includes full screen

editor and a Forth style 68000 assembler $100

68000Cross Assembler-Written entirely in 8086 assem-

bly language, it is small and fast. All input and output is done

with standard MS-DOS calls so it will run on any MS-DOS
system, even those which are not totally PC compatible. All

68000 and 68010 instructions are supported. It has condi-

tional assembly, the symbol table is in alphabetical order,

and cross referencing is included. Include files are sup-

ported so it is easy to assemble big programs, but edit them

in small pieces. An equate file can be produced for PROM
based programming $50

ORDER FROM

Technology Resources
190 Sullivan Crossroad

Columbia Falls, MT 59912
Phone (406) 257-9119

Visa and Mastercard accepted

Prices postpaid in the U.S. and Canada

The Computer Journal / #44 37

Letters

I'd Like to See..

Upgrading non-IEEE 696 machines

(i.e. Altair IMSAI, etc.) to current specs.

This information would help on assem-

bling systems from what cards are still

available. Maybe the guys at Fulcrum
could contribute to this. They may be the

only maker of S-100 stuff left. I have done
some work on this, but am still having

problems making stuff work. I obviously

haven't hit on all the changes needed.

Language articles along the theme of

Modula-2 (or C, or ADA, etc.) as a second

language, and gear it to those who know
BASIC and a little assembler (i.e. BIOS
hacking). Yes, the languages are very dif-

ferent conceptually, but still it might get

some of us going.

Hints on CP/M dBASE II: What revs

had what bugs, what is the last rev, what
functions were in what overlays (there are

8-10 as I recall)— if you don't need certain

functions you can leave some off the work
disk, but which ones? As I recall, you had

a data base series going. Why not design

and write a dBASE file compatible sys-

tem? DB II was the only widely used (and

therefore sworn at) data base on CP/M,
and there would be a big interest in a

cheap replacement that did more.

How about an article on multi-tasking?

I've written a small multi-task scheduler,

and in fact have had CP/M 2.2 running as

a task. I'm no systems programmer, but

could present some basic theory.

Regarding Postscript language: how
about an article on how to drop a com-

pany logo on a page? Or a signature? and

how does Postscript differ from HP
Graphics Language?

How about the differences in the vari-

ous Mushy-DOS revs? Here at work we've

got 2.11, 3.1, 3.2, and 3.3 on various ma-

chines. One set of machines (the original

HP Vectra) MUST run 3.1, and nothing

else. I've got a Vectra ES/12 on my desk

running 3.21, and another guy here has 3.3

on his Vectra. What has he got that I

haven't? (and what makes the stuff so re-

vision sensitive?)

How about printer upgrades? I was

given an Okidata u83. Does anybody still

sell the "more-fonts" kits? How does an

Epson 286 differ from a 286E? or an FX-
100 from an FX-100 III?

One of my long term projects has been

to rewrite my amateur radio repeater op-

erating system and my floppy formatter.

The repeater program is over 1,200 lines,

and the formatter over 800 lines (and a

friend has repeater code over 25,000 lines.

He has to use a cross-assembler on a AT).

Even under Z80ASM, on a ram disk and
with a print spooler the formatter takes 15

minutes to assemble (even without gener-

ating a listing). There has to be a better

way, and there is: relocatable modules.

Modify a module, assemble it by itself, link

it and fire up the debugger. But I have yet

to find a good book on Z80 assembler

programming that shows how to use the

EXTRN, CSEG, DSEG (and similar fam-

ily) statements. A few people have sug-

gested looking at other programs and

reading the comments, but nothing beats a

good book. I thought the Microsoft have

written one oriented at M80 / L80 /

LIB80, but if they did I haven't found it.

Maybe Steve at SLR could write a couple

of articles on assembler software develop-

ment techniques and tools.

How about an article on SCSI. The
Commodore Amiga 1000 has one serial

port. A 4-port serial card that hangs on the

SCSI port, with a software driver for it

would be VERY popular.

Maybe an overview on X.25 protocol,

and how it's used. What's a PAD anyway,

and how does it work, and what services

does it provide.

How about an Ethernet overview?

There are several different flavors of

IEEE 802, some of which are compatible,

some are not (i.e. can't be mixed on the

same cable). And what's TCP/IP anyway?

I could go on and on, but then you'd

never get this renewal check, and I'd never

get back to work.

M.M.

Forth

Keep up the good work! I especially

like your Forth columns and hope they will

be permanent features of TCI.

In your discussion of single chip micros

with Forth kernals, I believe you skipped

Zilog's "Super-Z8" chip. This chip has two

machine instructions which implement ":"

and ";" directly for direct threaded code.

At one time Zilog had evaluation boards

available. I believe that the Forth kernal /

development system is available through

Inner Access Corp. (PO Box 888,

Belmont, CA 94002). The instruction set

is simple and powerful.

P.H.

Editor

(Continued from page 2)

Technical Consulting
Consulting is a very attractive alterna-

tive for people who have been cast out in

the current surge of mergers, downsizings,

and reductions in staff—and for those who
are tired of waiting for the ax to fall. The
lack of long term job security has pre-

vented many from entering the ranks of

the consultants. Now that there is no
longer any job security in working for a

major company, many people are finding

the consulting field very attractive. It's es-

pecially attractive to those who have been

laid off and who have not been able to find

another position, even after sending out

hundreds of r6sum6s.

Companies are using consultants to

provide short term technical skills, rather

than adding employees, and there is a

growing need for high tech consultants.

TCI is researching this topic, and is plan-

ning a special issue on consulting. Submit

your comments, suggestions, and article

proposals.

Embedded Controllers

Our embedded controller projects are

progressing well, but did not make it in this

issue. Scheduled for #45 are the beginning

of a tutorial on Getting Started with Em-
bedded Controllers and a series on serial

and parallel communications with the Z80.

Many projects will be based on controller

chips, such as the 8031, 68XX, and Z8,

but the Z80 is still attractive for certain

applications— especially now that a 20

MHz version is available.

There are dozens of microcontroller

chips available, and it is tempting to spend

all of the available time evaluating the

various chips rather than to make a deci-

sion and to actually get started on the de-

sign. I know that I've fallen into that trap

and spent too much time researching, but

now I'm working on a project for the next

issue.

I've decided to base the first project on

the Z80 microprocessor instead of one of

the various microcontrollers. Extensive

discussion on selecting the chip will be part

of the series. Briefly, my reasons for start-

ing with the Z80 are that I have the CPU
and peripheral chips, I have the assembler

and debugger, I am familiar with the Z80,

and serial and parallel I/O is a major func-

tion in this project. It is a good opportunity

to become familiar with embedded con-

troller functions and I/O. •

Reader Letters

The reader letters column died be-

cause of a lack of your letters. But it's

too useful and interesting to lose. It's

there to provide you a place to have a

say in where we go— but we need your

letters.

38 The Computer Journal / #44

Computer Corner

(Continued from page 40)

patibility. The manual indicates that all IF

THEN statements must have the IF and

THEN on the same line. Avocet did that,

however in reality the Motorola assembler

didn't care. I have had to go and edit all

text files and put the THENs and DOs (of

whilc.do) on one line. I guess following

the book closely was not so good— maybe

90% compatible would have been better.

If my statement of IF THEN structure

in an assembler made you ask, "what?",

yup that is right, Motorola assembler has

all kinds of structure in it. There is the

standard conditional assembly structure,

include this code if...(debug?). There also

is structured assembly statements to allow

for a higher level approach to handling

conditional test. These are the

IF..THEN...ELSE and WHILE...DO type

of statements. The Avocet manual tells

you what they actually become, while Mo-

torola keeps it a secret. Typically they just

turn into a compare this to that and jump

here if not true, else do that. Which is

what I have been doing for years and find

easier to deal with. The programmers who
wrote the 68000 code had little if any as-

sembly experience and so they used the

structures endlessly and senselessly. They

cause almost as much problems as the

MACROS.

The only thing the programmers loved

more than structure was MACROS.
There are macros for everything. Even

things that could be done simpler and eas-

ier without them are done with macros. I

spent one whole day just trying to figure

out two simple macros. One was to help

solve the need to put "0" in a table to pad

out the lines to 14 characters. The system

disassembler uses tables to step through

and compare the code to, and then prints

out the mnemonic. Well each of the mne-

monics is different in length and needed

padding to make them all the same length.

The macro was blowing up by calling itself

more than 30 times (a limit in Avocet). I

solved the problem by putting in "0" as

needed to pad out the lines, a considerable

more simple solution I admit, but it works

correctly— always!

Another macro problem popped up

due to the Motorola assembler always

changing lower case character to upper,

even in the macro calls. Avocet does not.

The macro did a character string check

and was failing the string test because one

was lower case the other upper. That was

easy to solve (make them both the same—

lower case), but if the Avocet had not in-

cluded a macro preprocessor I would have

spent more than one day on finding the

problem. On a PC based system, memory

is a problem, so the assembly process is

broken into two steps. You process MAC-
ROS using the M68K macro preprocessor

and it creates an A68 text file. The new file

contains the MACROs with flags stating if

the test were true or false (as well as other

helpful comments). All that was needed to

see where my MACRO was going wrong

was to check the A68 file. It showed that

string compares were turning out false not

true as had been intended.

Overall I like the Avocet assembler and

think it will work just fine. I will need to

work on all 200 or more files, checking for

IF THEN and bad MACROS, but an

hour or so each should do it. I also discov-

ered that the assembler was originally a

Quello assembler. That is what I had been

using at home, Quello version 1, 1 think. It

was a public domain program way back

when. They are now on version 6 and have

linkers, library editors, and the macro pre-

processor (which will be my life saver). All

in all I think it is a good and sound prod-

uct.

MCUs
We have been talking about using

small computers to do things. I like the

Motorola's brand of micros over the In-

tel's. At work they have used an 68705 as

keyboard translator. We have our own

style of keyboard, and many clients want to

use PC compatible keyboards in their

place. One of the engineers designed a

three chip product (68705 and two glue

TTLs) to convert the PC operation into

one compatible to ours. When I got my
February issue of Circuit Cellar INK (a

Ciarcia publication) it too contains a key-

board translation design. It uses an 8031

(Intel) with external ROM. The main dif-

ference is the ability of this design to sup-

ply serial or parallel ASCII output. The ar-

ticle explains how to set it up for whatever

operation you need. It seems several

people have decided using small control-

lers is more fun and maybe cheaper than

buying new keyboards.

As to why I would chose a Motorola

over Intel product, it is their instruction set

by far. It is simple, and linear. You may be

wondering what linear means in this case.

It is consistency. Whether you are talking

to memory or I/O it is all addressed and

handled the same. Internal registers typi-

cally are addressed and manipulated the

same, no special instructions or special op-

erations. Whenever I work on PCs, it

seems I am always looking up some special

condition or operation. The 80X86 set has

lots of exception instructions, by that I

mean you do it this way on these registers,

but this other way for those. Motorola's

instruction set is, "you do it this way for

everything." The only device I have never

minded the special instructions is the Z80.

In the case of the Z80, 1 have two reasons;

I have spent a large amount of time with

them, and the limited instruction set itself.

A few exceptions or special instructions

are fine, many are too much. The Z80 to

me, seems to have just the right mix of

regular instructions and limited special

cases.

Hardware Problems

I have been working with IBM PS/2s

lately and been finding out some of their

problems. Went to upgrade my 50Z and

found out the hard way about memory

SIPs. Seems some early modules used a

SIP holder design that breaks far to easily.

Mine did just that. Only repair option is to

send the boards back and get a new one

with a different designed holder. Right

now I have some plastic holding the mem-
ory SIP in place. A good temporary fix is

getting a round piece of plastic and cutting

it in half on one side only. This allows you

to slip it over the ends (the cut part) where

it will work as a mini "C" clamp and hold

the SIP in place. If I had been a regular

computer user and not one with lots of

hardware experience I would have though

the problem was something I did. But I

handled the SIP insertion properly and still

the holding tabs broke off. Also I can look

at the newer boards and see they no longer

use this style holder. That is definitely the

sign that the original part was at fault.

However good luck at trying to get IBM to

admit they used faulty parts.

Next Time

Well that is about it for now. Hopefully

I can get to some old ideas I want to cover

next time. Until then keep working on

hacking up those small projects. •

Companies Mentioned:

Video Dimensions

UltiMeth Systems

24035 Fernlake Drive

Harbor City, CA 90710

(213)539-4276

Avocet Systems Inc.

P.O. Box 490

Rockport, Maine 04856

(800) 448-8500

Circuit Cellars INK

4 Park Street, Suite 20

Vernon, CT 06066

(203) 875-2751

The Computer Journal / #44 39

The Computer Corner

by Bill Kibler

It seems like fatherhood sure has made

a crimp in my computer work. Went to a

swap meet yesterday and saw several items

to buy, but decided I wouldn't have the

time to work on them. A lot of real bar-

gains to be had for those who want to play.

I saw $8000 worth of S-100 system (new

prices that is) go for $80. The chips alone

in the system are worth more than that. It

was a full hard disk with lots of extra inter-

face cards.

VGA
Speaking of interface cards, my VGA is

still keeping me going on the learning

curve. Been having a real problem finding

the type of information I want to see. My
problem is a fixed frequency monitor (640

by 480 color) and software that likes to go

in and change the VGA's modes. I had

thought that once the VGA card was set

for a certain mode type, it would convert

calls to other modes into a compatible op-

eration.

It turns out that any program, if given

the chance, will change the mode of the

card, even if you can't use that mode. The

programs do not care about your setup,

they think everybody is running multisync

monitors (which explains why most have

had to do so). I came across a program

however that may solve my problems. It is

called Video Dimensions by UltiMeth Sys-

tems. I am sure there are others like it, but

this one was given to me to check out at

work. What it appears to do is install a de-

vice driver for the VGA card. It also modi-

fies the INT 10 jump address (INT 10

does the video operations in DOS— like

set mode) to go to the device driver. It

comes with some extra programs, different

fonts, a VGA ANSI driver, and a utility

program to set (or see if you need to set)

all the possible VGA variables.

I like their V option, which puts up a

color test pattern on the monitor. You can

check your convergence to see if the moni-

tor needs adjustment. You also have sev-

eral modes for setting and checking the

colors used. I was quickly able to see that

mine needed the Horizontal control

touched up some. What impressed me the

most was being able to run some programs

(like FPC) in their color CGA mode. Be-

fore using their driver, I got a non color

display or it drove my monitor sync circuit

out of control. Now it just works like it is

suppose to. Time has not permitted me to

test everything, but their book explains

how to use it for a number of programs

(WS with 35 lines).

What I am beginning to understand is

that the better VGA card companies will

supply new drivers for their VGA prod-

ucts. Those who don't (like mine) will give

you drivers for special programs which will

work if you use a multisync monitor. If you

want to use a fixed frequency monitor and

have other modes converted or mapped to

the only mode you can use, a special de-

vice driver is needed. Video Dimensions

appears to be a good device drive for those

without multisync monitors.

LANS
My current work project is getting our

old 68000 software to work on a LAN sys-

tem. We have used dedicated serial lines

for each terminal. Now days the terminal

card sits in a PC, but we do not use the PC
bus for data transfers, we still use serial

ports. Our clients want to use LANS to

speed up data throughput. Also they want

to use regular LAN services as well as our

special boards. I feel the clients needs are

justified for the demand, however their

expectations maybe a little over optimistic.

One fact that is little looked at in com-

paring speed of dedicated lines to LANS is

sharing of resources. Typically, limits on a

dedicated line are only the speed of the

line and how fast the primary system can

feed data to it. Ours run at 38.4KB with

most of their time spent packetizing the

data (memory limits had a 240 byte packet

size) or waiting on the host for data. The

LAN system can theoretically give higher

throughput. In reality they seldom if ever

achieve that throughput. When crashes

with other packets, retries, and sometimes

multiple packetizing of the data is taken

into account, transfer rates can be pretty

low. A fellow worker has tested packet size

to transfer rates and found 2K packet sizes

can produce rates as low as 25KB for a

system sold as 10MB transfer rates.

My feelings are starting to lean toward

another sales job. By that I mean, the

specs would indicate considerably higher

transfer rates, when in fact consistent rates

are far below what those idealized design

specs would indicate. I would therefore

not believe anybody who is trying to sell

you a system based ONLY on how much

faster it will transfer your data. The fea-

tures that you get from having a hard disk

server system and common data files how-

ever is another matter, one not related to

transfer speed.

A separate point is quoting a report by

Infonetics of Santa Clara about LAN
crashes. It seems they interviewed 100 big

companies who use LANS. They reported

an average of 23 system crashes a year.

Each crash lasted about 5 hours. The cost

of those crashes was about $26,000 each

or $5,200 per hour of down time. The sur-

vey didn't indicate causes, but ours seems

to go down often without reason. Some

people feel power quality is a problem, I

slant toward poor hardware and software

design. My old S100 systems never failed

because they didn't use switching power

supplies. If you want a. solid hardware

LAN system, make sure it has an old style

linear power supply. The LAN software is

most likely similar to any major software

product in which not all the bugs will ever

be found.

Macros, We Have More and More

Macros...

My major task at work, or I should say

long term project, is porting the old 68000

assembly code from an Exormacs (Motor-

ola development) system to be crossas-

sembled on PC based system. I am using

the Avocet crossassembler as it is suppose

to be 100% compatible with the latest Mo-

torola assembler we were using. The first

problem I ran into was definition of com-

(Continued on page 39)

40 The Computer Journal / #44

